Geografie 2020, 125, 473-500
https://doi.org/10.37040/geografie2020125040473
From Chernozem to Luvisol or from Luvisol to Chernozem? A discussion about the relationships and limits of the two types of soils. A case study of the soil catena of Hrušov, Czechia
References
1. 2000): Holocene development of soils in response to environmental changes: the Novosvobodnaya archaeological site, North Caucasus. CATENA, 41, 1–3, 237–248.
< , A.L. (https://doi.org/10.1016/S0341-8162(00)00105-3>
2. 2007): Rates of soil-forming processes in three main models of pedogenesis. Revista Mexicana de Ciencias Geológicas, 24, 2, 283–292.
, A.L. (
3. 2005): Chernozem-Soil of the Year 2005. J. Plant Nutr. Sci.2005, 168, 725–740.
< , M., RINKLEBE, J., MERBACH, I., KÖRSCHENS, M., LANGER, U., HOFMANN, B. (https://doi.org/10.1002/jpln.200521814>
4. 2013): High-resolution record of the environmental response to climatic variations during the Last Interglacial–Glacial cycle in Central Europe: the loess-palaeosol sequence of Dolní Věstonice (Czech Republic). Quaternary Science Reviews, 67, 17–38.
< , P., ROUSSEAU, D.-D., DEGEAI, J.-P., MOINE, O., LAGROIX, F., KREUTZER, S., FUCHS, M., HATTÉ, C., GAUTHIER, C., SVOBODA, J., LISÁ, L. (https://doi.org/10.1016/j.quascirev.2013.01.014>
5. 1972): Zur Problem der Schwartzerde-Bildung in Norddeutschland. Mitteilungen der deutschen bodenkundlichen Gesellschaft, 15, 3–10.
, F. (
6. BAIZE, D., GIRARD, M.-C. (2008): Référentiel pédologique. AFES, Vesrailles.
7. BENEŠ, J. (2004): Palaeoecology of the LBK: earliest agriculturalist and landscape of Bohemia, Czech Republic. In: LBK Dialogues. Studies in the formation of the Linear Pottery Culture. BAR International Series, Oxford, 143–150.
8. BRYSON, R.A., MCENANEY DEWALL, K. (2007): A paleoclimatology workbook: high resolution, site-specific, macrophysical climate modeling. The Mammoth Site of Hot Springs, Hot Springs.
9. BULLOCK, P., FEDOROFF, N., STOOPS, G., TURSINA, T., BABEL, U. (1985): Handbook for soil thin section description. Waine Research Publications, Wolverhampton.
10. 2009): Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). European Journal of Soil Science, 60, 5, 770–784.
< , L., BARTHÈS, B.G., GOMEZ, C., ERTLEN, D., GENOT, V., HEDDE, M., STEVENS, A., BRUN, J.J. (https://doi.org/10.1111/j.1365-2389.2009.01178.x>
11. Česká geologická služba (2013): Geologická mapa. Česká geologická služba, Praha.
12. ČÚZK (2019): Geoportál ČÚZK, https://geoportal.cuzk.cz/ (01.01.2019).
13. CHYTRÝ, M., KUČERA, T., KOČÍ, M. (2001): Katalog biotopů České republiky. AOPK ČR, Praha.
14. DANKOVÁ, L. (2012): Antrakologie a NMR spektroskopie v paleoekologickém výzkumu černozemí. Přírodovědecká fakulta UK, Praha.
15. DEÁK, J., GEBHARDT, A., LEWIS, H., USAI, M.R., LEE, H. (2017): Soils Disturbed by Vegetation Clearance and Tillage. In: Nicosia, C., Stoops, G. (eds.): Archaeological Soil and Sediment Micromorphology. John Wiley & Sons, Ltd, Chichester, UK, 231–264.
16. DOKUCHAEV, V.V. (1883): Russkij Cernozem. Dissertation. Sankt Petersburg.
17. 2012): Human Response to Potential Robust Climate Change around 5500 cal BP in the Territory of Bohemia (the Czech Republic). Interdisciplinaria Archaeologica Natural Sciences in Archaeology, III, 1, 43–55.
< , D. (https://doi.org/10.24916/iansa.2012.1.3>
18. 2019): Settlement activity in later prehistory: invisible in the archaeological record but documented by pollen and sedimentary evidence. Archaeological and Anthropological Sciences, 11, 5, 1683–1700.
< , D., KOZÁKOVÁ, R., CHUMAN, T., STROUHALOVÁ, B., ABRAHAM, V., PONIŠTIAK, Š., ŠEFRNA, L. (https://doi.org/10.1007/s12520-018-0614-x>
19. DUCHAUFOUR, P. (1998): Handbook of Pedology. A.A. Balkema, Rotterdam, Brookfield.
20. 2007): Pedogenesis of Chernozems in Central Europe – A review. Geoderma, 139, 3–4, 288–299.
< , E., GERLACH, R., GEHRT, E., SCHMIDT, M.W.I. (https://doi.org/10.1016/j.geoderma.2007.01.009>
21. ESDC (2013): European Soil Data Centre, http://eusoils.jrc.ec.europa.eu/data.html (25.04.2013).
22. FAO, ISRIC, ISSS (2006): World reference base for soil resources 2006. A framework for international classification, correlation and communication. Food and agriculture organization of the United nations, Rome.
23. FEDOROFF, N., BRESSON, L.M., COURTY, M.A. (1987): Micromorphologie des Sols – Soil Micromorphology. Association française pour l’étude du sol, Paris.
24. 1999): Die Schwarzerden Nordostdeutschland und ihre Stellung in der holozänen Landschaftsentwicklung. J. Plant Nutr. Soil Sci, 162, 1999, 443–449.
< -ZUJKOV, U., SCHMIDT, R., BRANDE, A. (https://doi.org/10.1002/(SICI)1522-2624(199908)162:4<443::AID-JPLN443>3.0.CO;2-7>
25. FLAŠAROVÁ, K., STROUHALOVÁ, B., ŠEFRNA, L., VERRECCHIA, E., LAUER, T., JUŘIČKOVÁ, L., KOLAŘÍK, P., LOŽEK, V. (2020): Multiproxy evidence of middle and Late Pleistocene environmental changes in the loess-paleosol sequence of Bůhzdař (Czech Republic). Quaternary International International, 552, 4–14.
<https://doi.org/10.1016/j.quaint.2019.10.004>
26. FAO (2015): World reference base for soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. FAO, Rome.
27. 2016): Hedges, colluvium and lynchets along a reference toposequence (Habsheim, Alsace, France): history of erosion in a loess area. Quaternaire, 27, 2, 173–185.
< , L., SCHWARTZ, D., ERTLEN, D., TRAUTMANN, M. (https://doi.org/10.4000/quaternaire.7569>
28. 1993): Evolution du paléopaysage agricole dans le nord-ouest de la France. Apport de la micromorphologie. The Holocene, 3, 3, 333–341.
< , A. (https://doi.org/10.1177/095968369300300405>
29. GEBHARDT, A. (1995): Soil micromorphological data from experimental and traditional agriculture. Archaeological sediments and soils: analysis, interpretation and management, Archetype press, London, https://hal.archives-ouvertes.fr/hal-02275501/document, 5–40.
30. 2014): Grandes phases de pédogenèse, d’érosion et d’anthropisation des sols au cours de la seconde moitié de l’Holocène en Lorraine (France). ArcheoSciences, 1, 38, 7–29.
< , A., FECHNER, K., OCCHIETTI, S. (https://doi.org/10.4000/archeosciences.4113>
31. 2006): Prehistoric alteration of soil in the Lower Rhine Basin, Northwest Germany – archaeological, 14C and geochemical evidence. Geoderma, 136, 1–2, 38–50.
< , R., BAUMEWERD-SCHMIDT, H., VAN DEN BORG, K., ECKMEIER, E., SCHMIDT, M.W.I. (https://doi.org/10.1016/j.geoderma.2006.01.011>
32. 2007): Loess in Europe – its spatial distribution based on a European Loess Map, scale 1:2,500,000. Quaternary Science Reviews, 16, 9–10, 1301–1312.
< , D., FINK, J., HAASE, G., RUSKE, R., PÉCSI, M., RICHTER, H., ALTERMANN, M., JÄGER, K.-D. (https://doi.org/10.1016/j.quascirev.2007.02.003>
33. HAUPTMAN, I., KUKAL, Z., POŠMOURNÝ, K., NĚMEC, J. (2009): Půda v České republice. Ministerstvo životního prostředí a Ministerstvo zemědělství, Praha.
34. 2013): Origin and history of grasslands in Central Europe – a review. Grass and Forage Science, 68, 3, 345–363.
< , M., HEJCMANOVÁ, P., PAVLŮ, V., BENEŠ, J. (https://doi.org/10.1111/gfs.12066>
35. 2015): An integrated rock-magnetic and geochemical approach to loess/paleosol sequences from Bohemia and Moravia (Czech Republic): Implications for the Upper Pleistocene paleoenvironment in central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 418, 344–358.
< , J., HAMBACH, U., LISÁ, L., GRYGAR, T.M., HORÁČEK, I., MESZNER, S., KNÉSL, I. (https://doi.org/10.1016/j.palaeo.2014.11.024>
36. 1970): Some morphological aspects of regrouping phenomena in Dutch soils. Geoderma, 4, 3, 311–331.
< , A. (https://doi.org/10.1016/0016-7061(70)90008-X>
37. 2019): Origin, age and transformation of Chernozems in northern Central Europe – New data from Neolithic earthen barrows in SW Poland. CATENA, 180, 83–102.
< , C., PRZYBYŁ, A., KRUPSKI, M., ŁABAZ, B., WAROSZEWSKI, J. (https://doi.org/10.1016/j.catena.2019.04.014>
38. 2019): Chernozem relics in the Hellweg Loess Belt (Westphalia, NW Germany) – Natural or man-made? Quaternary International, 502, 296–308.
< , T., POCH, R.M., WIEDNER, K. (https://doi.org/10.1016/j.quaint.2018.09.015>
39. 2018): Assessment of longterm Holocene soil erosion rates in Polish loess areas using sedimentary archives from closed depressions: Assessment of soil erosion rates in loess areas using CDs. Earth Surface Processes and Landforms, 43, 5, 978–1000.
< -GAWRYSIAK, R., POESEN, J., GAWRYSIAK, L. (https://doi.org/10.1002/esp.4296>
40. 2007): Closed forest or open woodland as natural vegetation in the surroundings of Linearbandkeramik settlements? Vegetation History and Archaeobotany, 17, 1, 51–64.
< , A. (https://doi.org/10.1007/s00334-007-0110-1>
41. 2001): L’anthopisation du paysage pédologique agricole de la Belgique depuis le Néolithique ancien – Apport de l’archéopédologie. Étude et Gestion des Sols, 8, 2, 103–118.
, R. (
42. 1975): Spätglaziale bis frühhlozäne Steppenbodenbildung und Klimaentwicklung im südlichen Rheinhessischen Tafel- und Hügelland. Eiszeitalter und Gegenwart, 26, 118–130.
, H., MAQSUD, N. (
43. 2011): Anthropogenic pedogenesis of Chernozems in Germany? – A critical review. Black Soils and Black Sediments – Archives of Landscape Evolution, 243, 2, 273–279.
, C., SAILE, T. (
44. LOŽEK, V. (1973): Příroda ve čtvrtohorách. Academia, Praha.
45. 1973): Der Bodenkomplex von Velký Hubenov als Beispiel einer retrograden Bodenentwicklung im Laufe der Nacheiszeit. Časopis pro mineralogii a geologii, 18, 4, 365–383.
, V., SMOLÍKOVÁ, L. (
46. LOŽEK, V., SMOLÍKOVÁ, L. (1978): Die nacheiszeitlichen Bodenabfolgen von Poplze und Štětí als Beleg der Boden- und Landschaftentwicklung im Böhmischen Tschernosemgebiet. In: Beiträge zur Quatär- und Landscahftsforschung Festschrift zum 60. Geburtstag von Julius Fink. Verlag F. Hirt, Wien, 531–549.
47. 1990): Soil micromorphological evidence of early agriculture in North West Europe. World Archaeology, 22, 1, 53–69.
< , R.I., COURTY, M.A., GEBHARDT, A. (https://doi.org/10.1080/00438243.1990.9980129>
48. MACPHAIL, R.I., GOLDBERG, P. (2017): Applied Soils and Micromorphology in Archaeology. Cambridge University Press.
49. 2016): Parent material influence on soil response to vegetation change, Southeastern Minnesota, U.S.A. Geoderma, 275, 1–17.
< , J.A., JACOBS, P.M., GRULEY, K.E., REYERSON, P., HANSON, P.R. (https://doi.org/10.1016/j.geoderma.2016.04.004>
50. MUHS, D. (2007): Loess deposits, origins and properties. Elsevier, 1405–1418.
51. NĚMEČEK, J., MACKŮ, J., VOKOUN, J., VAVŘÍČEK, D., NOVÁK, P. (2001): Taxonomický klasifikační systém půd ČR. ČZU Praha a VÚMOP Praha, Praha.
52. NĚMĚČEK, J., MÜHLHANSELOVÁ, M., MACKŮ, J., VOKOUN, J., VAVŘÍČEK, D., NOVÁK, P. (2011): Taxonomický klasifikační systém půd. 2. upravené vydání. Praha.
53. NĚMEČEK, J., SMOLÍKOVÁ, L., KUTÍLEK, M. (1990): Pedologie a paleopedologie. Academia, Praha.
54. NEUHÄUSELOVÁ, Z. (1998): Mapa potencionální přirozené vegetace České republiky. Academia, Praha.
55. PAVLŮ, I., ZÁPOTOCKÁ, M. (2007): Archeologie pravěkých Čech. Sv. 3 Neolit. Archeologický ústav AV ČR, Praha.
56. 2015): Mid- Holocene bottleneck for central European dry grasslands: Did steppe survive the forest optimum in northern Bohemia, Czech Republic? The Holocene, 25, 4, 716–726.
< , P., CHYTRÝ, M., JUŘIČKOVÁ, L., SÁDLO, J., NOVÁK, J., LOŽEK, V. (https://doi.org/10.1177/0959683614566218>
57. VÚMOP (2019): Půda v mapách, https://mapy.vumop.cz/ (15.4.2019).
58. 2011): Lessivage as a major process of soil formation: A revisitation of existing data. Geoderma, 16, 135–147.
< , L., SAMOUËLIAN, A., LAROCHE, B., CORNU, S. (https://doi.org/10.1016/j.geoderma.2011.07.031>
59. 1968): Zur Datierung und Bodengeschichte mitteleuropäischer Oberflächenböden (Schwarzerde, Parabraunerde, Kalksteinbraunlehm): Spätglazial oder Holozän? Göttinger Bodenkundliche Berichte, 6, 127–212.
, H., MEYER, B. (
60. 1963): Berührungspunkte der archäologischen und bodenkundlichen Forschung. Neue Ausgrabungen und Forschungen in Niedersachsen, 1, 1–18.
, F., MEYER, B. (
61. 2009): Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95, 1–2, 1–52.
< , N.D., TABOR, N.J. (https://doi.org/10.1016/j.earscirev.2009.03.004>
62. 1962): Půdy typu lessivé (parahnědozemě) v okolí Letovic. Časopis pro mineralogii a geologii, VII, 316–321.
, L. (
63. 1969): Polygenetické půdy rázu pseudočernozemí v Boskovické brázdě. Časopis pro mineralogii a geologii, 14, 2, 171–178.
, L. (
64. 1971): Gesetzmässigkeiten der Bodenentwicklung im Quartär. Eiszeitalter und Gegenwart, 22, 156–177.
, L. (
65. 1972): The significance of soil micromorphology for the solution of soil evaluation in the geology of the Quaternary. Third international working-meeting on soil micromorphology Wroclaw, 1969. Zeszyty problemowe postepow nauk rolniczych, 123, 543–557.
, L. (
66. STOOPS, G. (2003): Guidelines for Analysis and Description of Soil and Regolith Thin sections. Soil Science Society of America.
67. STOOPS, G., MARCELINO, V., MEES, F. (2010): Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier.
68. 2019): Assessing the vegetation history of european chernozems through qualitative near infrared spectroscopy. Quaternaire, 30, 3, 227–241.
< , B., ERTLEN, D., ŠEFRNA, L., NOVÁK, T. J., VIRÁGH, K., SCHWARTZ, D. (https://doi.org/10.4000/quaternaire.12101>
69. TOLASZ, R. et al. (2007): Atlas podnebí Česka. Czech Hydrometeorological Institute, Palacký University, Praha, Olomouc.
70. 1992): Importance de la succession des phases écologiques anciennes et actuelles dans la différenciation des sols lessivés de la couverture loessique d’Europe occidentale: argumentation stratigraphique et archéologique, Science du sol, 30, 2, 75–93.
, B., FAGNART, J.P., LANGOR, R., MUNAUT, A. (
71. 2019): Distribution of Chernozems and Phaeozems in Central Germany during the Neolithic period. Quaternary International, 511, 166–184.
< , H., TINAPP, C., LAUER, T., GLASER, B., STÄUBLE, H., KÜHN, P., ZIELHOFER, C. (https://doi.org/10.1016/j.quaint.2017.10.041>
72. 2014): Vegetation history of chernozems in the Czech Republic. Vegetation History and Archaeobotany, 23, 97–108.
< , B., DANKOVÁ, L., ERTLEN, D., NOVÁK, J., SCHWARTZ, D., ŠEFRNA, L., DELHON, C., BERGER, J.-F. (https://doi.org/10.1007/s00334-014-0441-7>
73. 2016): Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews, 157, 1–17.
< , K., PUSTOVOYTOV, K., KUZYAKOV, Y. (https://doi.org/10.1016/j.earscirev.2016.03.003>