Geografie 2020, 125, 473-500

https://doi.org/10.37040/geografie2020125040473

From Chernozem to Luvisol or from Luvisol to Chernozem? A discussion about the relationships and limits of the two types of soils. A case study of the soil catena of Hrušov, Czechia

Barbora Strouhalová1ID, Anne Gebhardt2,3, Damien Ertlen3ID, Luděk Šefrna4ID, Kristýna Flašarová4ID, Petr Kolařík4ID, Dominique Schwartz3

1Institute of Archaeology of the Czech Academy of Sciences, Prague, v. v. i., Prague, Czechia
2Institut National de Recherches Archéologiques Préventives Grand Est Nord, Ludres, France
3University of Strasbourg, Faculté de Géographie et d’Aménagement, Laboratoire Image, Strasbourg, France
4Charles University in Prague, Faculty of Science, Department of Physical Geography and Geoecology, Prague, Czechia

Received February 2020
Accepted July 2020

References

1. ALEXANDROVSKIY, A.L. (2000): Holocene development of soils in response to environmental changes: the Novosvobodnaya archaeological site, North Caucasus. CATENA, 41, 1–3, 237–248. <https://doi.org/10.1016/S0341-8162(00)00105-3>
2. ALEXANDROVSKIY, A.L. (2007): Rates of soil-forming processes in three main models of pedogenesis. Revista Mexicana de Ciencias Geológicas, 24, 2, 283–292.
3. ALTERMANN, M., RINKLEBE, J., MERBACH, I., KÖRSCHENS, M., LANGER, U., HOFMANN, B. (2005): Chernozem-Soil of the Year 2005. J. Plant Nutr. Sci.2005, 168, 725–740. <https://doi.org/10.1002/jpln.200521814>
4. ANTOINE, P., ROUSSEAU, D.-D., DEGEAI, J.-P., MOINE, O., LAGROIX, F., KREUTZER, S., FUCHS, M., HATTÉ, C., GAUTHIER, C., SVOBODA, J., LISÁ, L. (2013): High-resolution record of the environmental response to climatic variations during the Last Interglacial–Glacial cycle in Central Europe: the loess-palaeosol sequence of Dolní Věstonice (Czech Republic). Quaternary Science Reviews, 67, 17–38. <https://doi.org/10.1016/j.quascirev.2013.01.014>
5. BAILLY, F. (1972): Zur Problem der Schwartzerde-Bildung in Norddeutschland. Mitteilungen der deutschen bodenkundlichen Gesellschaft, 15, 3–10.
6. BAIZE, D., GIRARD, M.-C. (2008): Référentiel pédologique. AFES, Vesrailles.
7. BENEŠ, J. (2004): Palaeoecology of the LBK: earliest agriculturalist and landscape of Bohemia, Czech Republic. In: LBK Dialogues. Studies in the formation of the Linear Pottery Culture. BAR International Series, Oxford, 143–150.
8. BRYSON, R.A., MCENANEY DEWALL, K. (2007): A paleoclimatology workbook: high resolution, site-specific, macrophysical climate modeling. The Mammoth Site of Hot Springs, Hot Springs.
9. BULLOCK, P., FEDOROFF, N., STOOPS, G., TURSINA, T., BABEL, U. (1985): Handbook for soil thin section description. Waine Research Publications, Wolverhampton.
10. CÉCILLON, L., BARTHÈS, B.G., GOMEZ, C., ERTLEN, D., GENOT, V., HEDDE, M., STEVENS, A., BRUN, J.J. (2009): Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). European Journal of Soil Science, 60, 5, 770–784. <https://doi.org/10.1111/j.1365-2389.2009.01178.x>
11. Česká geologická služba (2013): Geologická mapa. Česká geologická služba, Praha.
12. ČÚZK (2019): Geoportál ČÚZK, https://geoportal.cuzk.cz/ (01.01.2019).
13. CHYTRÝ, M., KUČERA, T., KOČÍ, M. (2001): Katalog biotopů České republiky. AOPK ČR, Praha.
14. DANKOVÁ, L. (2012): Antrakologie a NMR spektroskopie v paleoekologickém výzkumu černozemí. Přírodovědecká fakulta UK, Praha.
15. DEÁK, J., GEBHARDT, A., LEWIS, H., USAI, M.R., LEE, H. (2017): Soils Disturbed by Vegetation Clearance and Tillage. In: Nicosia, C., Stoops, G. (eds.): Archaeological Soil and Sediment Micromorphology. John Wiley & Sons, Ltd, Chichester, UK, 231–264.
16. DOKUCHAEV, V.V. (1883): Russkij Cernozem. Dissertation. Sankt Petersburg.
17. DRESLEROVÁ, D. (2012): Human Response to Potential Robust Climate Change around 5500 cal BP in the Territory of Bohemia (the Czech Republic). Interdisciplinaria Archaeologica Natural Sciences in Archaeology, III, 1, 43–55. <https://doi.org/10.24916/iansa.2012.1.3>
18. DRESLEROVÁ, D., KOZÁKOVÁ, R., CHUMAN, T., STROUHALOVÁ, B., ABRAHAM, V., PONIŠTIAK, Š., ŠEFRNA, L. (2019): Settlement activity in later prehistory: invisible in the archaeological record but documented by pollen and sedimentary evidence. Archaeological and Anthropological Sciences, 11, 5, 1683–1700. <https://doi.org/10.1007/s12520-018-0614-x>
19. DUCHAUFOUR, P. (1998): Handbook of Pedology. A.A. Balkema, Rotterdam, Brookfield.
20. ECKMEIER, E., GERLACH, R., GEHRT, E., SCHMIDT, M.W.I. (2007): Pedogenesis of Chernozems in Central Europe – A review. Geoderma, 139, 3–4, 288–299. <https://doi.org/10.1016/j.geoderma.2007.01.009>
21. ESDC (2013): European Soil Data Centre, http://eusoils.jrc.ec.europa.eu/data.html (25.04.2013).
22. FAO, ISRIC, ISSS (2006): World reference base for soil resources 2006. A framework for international classification, correlation and communication. Food and agriculture organization of the United nations, Rome.
23. FEDOROFF, N., BRESSON, L.M., COURTY, M.A. (1987): Micromorphologie des Sols – Soil Micromorphology. Association française pour l’étude du sol, Paris.
24. FISCHER-ZUJKOV, U., SCHMIDT, R., BRANDE, A. (1999): Die Schwarzerden Nordostdeutschland und ihre Stellung in der holozänen Landschaftsentwicklung. J. Plant Nutr. Soil Sci, 162, 1999, 443–449. <https://doi.org/10.1002/(SICI)1522-2624(199908)162:4<443::AID-JPLN443>3.0.CO;2-7>
25. FLAŠAROVÁ, K., STROUHALOVÁ, B., ŠEFRNA, L., VERRECCHIA, E., LAUER, T., JUŘIČKOVÁ, L., KOLAŘÍK, P., LOŽEK, V. (2020): Multiproxy evidence of middle and Late Pleistocene environmental changes in the loess-paleosol sequence of Bůhzdař (Czech Republic). Quaternary International International, 552, 4–14. <https://doi.org/10.1016/j.quaint.2019.10.004>
26. FAO (2015): World reference base for soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. FAO, Rome.
27. FROEHLICHER, L., SCHWARTZ, D., ERTLEN, D., TRAUTMANN, M. (2016): Hedges, colluvium and lynchets along a reference toposequence (Habsheim, Alsace, France): history of erosion in a loess area. Quaternaire, 27, 2, 173–185. <https://doi.org/10.4000/quaternaire.7569>
28. GEBHARDT, A. (1993): Evolution du paléopaysage agricole dans le nord-ouest de la France. Apport de la micromorphologie. The Holocene, 3, 3, 333–341. <https://doi.org/10.1177/095968369300300405>
29. GEBHARDT, A. (1995): Soil micromorphological data from experimental and traditional agriculture. Archaeological sediments and soils: analysis, interpretation and management, Archetype press, London, https://hal.archives-ouvertes.fr/hal-02275501/document, 5–40.
30. GEBHARDT, A., FECHNER, K., OCCHIETTI, S. (2014): Grandes phases de pédogenèse, d’érosion et d’anthropisation des sols au cours de la seconde moitié de l’Holocène en Lorraine (France). ArcheoSciences, 1, 38, 7–29. <https://doi.org/10.4000/archeosciences.4113>
31. GERLACH, R., BAUMEWERD-SCHMIDT, H., VAN DEN BORG, K., ECKMEIER, E., SCHMIDT, M.W.I. (2006): Prehistoric alteration of soil in the Lower Rhine Basin, Northwest Germany – archaeological, 14C and geochemical evidence. Geoderma, 136, 1–2, 38–50. <https://doi.org/10.1016/j.geoderma.2006.01.011>
32. HAASE, D., FINK, J., HAASE, G., RUSKE, R., PÉCSI, M., RICHTER, H., ALTERMANN, M., JÄGER, K.-D. (2007): Loess in Europe – its spatial distribution based on a European Loess Map, scale 1:2,500,000. Quaternary Science Reviews, 16, 9–10, 1301–1312. <https://doi.org/10.1016/j.quascirev.2007.02.003>
33. HAUPTMAN, I., KUKAL, Z., POŠMOURNÝ, K., NĚMEC, J. (2009): Půda v České republice. Ministerstvo životního prostředí a Ministerstvo zemědělství, Praha.
34. HEJCMAN, M., HEJCMANOVÁ, P., PAVLŮ, V., BENEŠ, J. (2013): Origin and history of grasslands in Central Europe – a review. Grass and Forage Science, 68, 3, 345–363. <https://doi.org/10.1111/gfs.12066>
35. HOŠEK, J., HAMBACH, U., LISÁ, L., GRYGAR, T.M., HORÁČEK, I., MESZNER, S., KNÉSL, I. (2015): An integrated rock-magnetic and geochemical approach to loess/paleosol sequences from Bohemia and Moravia (Czech Republic): Implications for the Upper Pleistocene paleoenvironment in central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 418, 344–358. <https://doi.org/10.1016/j.palaeo.2014.11.024>
36. JONGERIUS, A. (1970): Some morphological aspects of regrouping phenomena in Dutch soils. Geoderma, 4, 3, 311–331. <https://doi.org/10.1016/0016-7061(70)90008-X>
37. KABAŁA, C., PRZYBYŁ, A., KRUPSKI, M., ŁABAZ, B., WAROSZEWSKI, J. (2019): Origin, age and transformation of Chernozems in northern Central Europe – New data from Neolithic earthen barrows in SW Poland. CATENA, 180, 83–102. <https://doi.org/10.1016/j.catena.2019.04.014>
38. KASIELKE, T., POCH, R.M., WIEDNER, K. (2019): Chernozem relics in the Hellweg Loess Belt (Westphalia, NW Germany) – Natural or man-made? Quaternary International, 502, 296–308. <https://doi.org/10.1016/j.quaint.2018.09.015>
39. KOŁODYŃSKA-GAWRYSIAK, R., POESEN, J., GAWRYSIAK, L. (2018): Assessment of longterm Holocene soil erosion rates in Polish loess areas using sedimentary archives from closed depressions: Assessment of soil erosion rates in loess areas using CDs. Earth Surface Processes and Landforms, 43, 5, 978–1000. <https://doi.org/10.1002/esp.4296>
40. KREUZ, A. (2007): Closed forest or open woodland as natural vegetation in the surroundings of Linearbandkeramik settlements? Vegetation History and Archaeobotany, 17, 1, 51–64. <https://doi.org/10.1007/s00334-007-0110-1>
41. LANGOHR, R. (2001): L’anthopisation du paysage pédologique agricole de la Belgique depuis le Néolithique ancien – Apport de l’archéopédologie. Étude et Gestion des Sols, 8, 2, 103–118.
42. LESER, H., MAQSUD, N. (1975): Spätglaziale bis frühhlozäne Steppenbodenbildung und Klimaentwicklung im südlichen Rheinhessischen Tafel- und Hügelland. Eiszeitalter und Gegenwart, 26, 118–130.
43. LORZ, C., SAILE, T. (2011): Anthropogenic pedogenesis of Chernozems in Germany? – A critical review. Black Soils and Black Sediments – Archives of Landscape Evolution, 243, 2, 273–279.
44. LOŽEK, V. (1973): Příroda ve čtvrtohorách. Academia, Praha.
45. LOŽEK, V., SMOLÍKOVÁ, L. (1973): Der Bodenkomplex von Velký Hubenov als Beispiel einer retrograden Bodenentwicklung im Laufe der Nacheiszeit. Časopis pro mineralogii a geologii, 18, 4, 365–383.
46. LOŽEK, V., SMOLÍKOVÁ, L. (1978): Die nacheiszeitlichen Bodenabfolgen von Poplze und Štětí als Beleg der Boden- und Landschaftentwicklung im Böhmischen Tschernosemgebiet. In: Beiträge zur Quatär- und Landscahftsforschung Festschrift zum 60. Geburtstag von Julius Fink. Verlag F. Hirt, Wien, 531–549.
47. MACPHAIL, R.I., COURTY, M.A., GEBHARDT, A. (1990): Soil micromorphological evidence of early agriculture in North West Europe. World Archaeology, 22, 1, 53–69. <https://doi.org/10.1080/00438243.1990.9980129>
48. MACPHAIL, R.I., GOLDBERG, P. (2017): Applied Soils and Micromorphology in Archaeology. Cambridge University Press.
49. MASON, J.A., JACOBS, P.M., GRULEY, K.E., REYERSON, P., HANSON, P.R. (2016): Parent material influence on soil response to vegetation change, Southeastern Minnesota, U.S.A. Geoderma, 275, 1–17. <https://doi.org/10.1016/j.geoderma.2016.04.004>
50. MUHS, D. (2007): Loess deposits, origins and properties. Elsevier, 1405–1418.
51. NĚMEČEK, J., MACKŮ, J., VOKOUN, J., VAVŘÍČEK, D., NOVÁK, P. (2001): Taxonomický klasifikační systém půd ČR. ČZU Praha a VÚMOP Praha, Praha.
52. NĚMĚČEK, J., MÜHLHANSELOVÁ, M., MACKŮ, J., VOKOUN, J., VAVŘÍČEK, D., NOVÁK, P. (2011): Taxonomický klasifikační systém půd. 2. upravené vydání. Praha.
53. NĚMEČEK, J., SMOLÍKOVÁ, L., KUTÍLEK, M. (1990): Pedologie a paleopedologie. Academia, Praha.
54. NEUHÄUSELOVÁ, Z. (1998): Mapa potencionální přirozené vegetace České republiky. Academia, Praha.
55. PAVLŮ, I., ZÁPOTOCKÁ, M. (2007): Archeologie pravěkých Čech. Sv. 3 Neolit. Archeologický ústav AV ČR, Praha.
56. POKORNÝ, P., CHYTRÝ, M., JUŘIČKOVÁ, L., SÁDLO, J., NOVÁK, J., LOŽEK, V. (2015): Mid- Holocene bottleneck for central European dry grasslands: Did steppe survive the forest optimum in northern Bohemia, Czech Republic? The Holocene, 25, 4, 716–726. <https://doi.org/10.1177/0959683614566218>
57. VÚMOP (2019): Půda v mapách, https://mapy.vumop.cz/ (15.4.2019).
58. QUÉNARD, L., SAMOUËLIAN, A., LAROCHE, B., CORNU, S. (2011): Lessivage as a major process of soil formation: A revisitation of existing data. Geoderma, 16, 135–147. <https://doi.org/10.1016/j.geoderma.2011.07.031>
59. ROHDENBURG, H., MEYER, B. (1968): Zur Datierung und Bodengeschichte mitteleuropäischer Oberflächenböden (Schwarzerde, Parabraunerde, Kalksteinbraunlehm): Spätglazial oder Holozän? Göttinger Bodenkundliche Berichte, 6, 127–212.
60. SCHEFFER, F., MEYER, B. (1963): Berührungspunkte der archäologischen und bodenkundlichen Forschung. Neue Ausgrabungen und Forschungen in Niedersachsen, 1, 1–18.
61. SHELDON, N.D., TABOR, N.J. (2009): Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95, 1–2, 1–52. <https://doi.org/10.1016/j.earscirev.2009.03.004>
62. SMOLÍKOVÁ, L. (1962): Půdy typu lessivé (parahnědozemě) v okolí Letovic. Časopis pro mineralogii a geologii, VII, 316–321.
63. SMOLÍKOVÁ, L. (1969): Polygenetické půdy rázu pseudočernozemí v Boskovické brázdě. Časopis pro mineralogii a geologii, 14, 2, 171–178.
64. SMOLÍKOVÁ, L. (1971): Gesetzmässigkeiten der Bodenentwicklung im Quartär. Eiszeitalter und Gegenwart, 22, 156–177.
65. SMOLÍKOVÁ, L. (1972): The significance of soil micromorphology for the solution of soil evaluation in the geology of the Quaternary. Third international working-meeting on soil micromorphology Wroclaw, 1969. Zeszyty problemowe postepow nauk rolniczych, 123, 543–557.
66. STOOPS, G. (2003): Guidelines for Analysis and Description of Soil and Regolith Thin sections. Soil Science Society of America.
67. STOOPS, G., MARCELINO, V., MEES, F. (2010): Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier.
68. STROUHALOVÁ, B., ERTLEN, D., ŠEFRNA, L., NOVÁK, T. J., VIRÁGH, K., SCHWARTZ, D. (2019): Assessing the vegetation history of european chernozems through qualitative near infrared spectroscopy. Quaternaire, 30, 3, 227–241. <https://doi.org/10.4000/quaternaire.12101>
69. TOLASZ, R. et al. (2007): Atlas podnebí Česka. Czech Hydrometeorological Institute, Palacký University, Praha, Olomouc.
70. VAN VLIET-LANOE, B., FAGNART, J.P., LANGOR, R., MUNAUT, A. (1992): Importance de la succession des phases écologiques anciennes et actuelles dans la différenciation des sols lessivés de la couverture loessique d’Europe occidentale: argumentation stratigraphique et archéologique, Science du sol, 30, 2, 75–93.
71. VON SUCHODOLETZ, H., TINAPP, C., LAUER, T., GLASER, B., STÄUBLE, H., KÜHN, P., ZIELHOFER, C. (2019): Distribution of Chernozems and Phaeozems in Central Germany during the Neolithic period. Quaternary International, 511, 166–184. <https://doi.org/10.1016/j.quaint.2017.10.041>
72. VYSLOUŽILOVÁ, B., DANKOVÁ, L., ERTLEN, D., NOVÁK, J., SCHWARTZ, D., ŠEFRNA, L., DELHON, C., BERGER, J.-F. (2014): Vegetation history of chernozems in the Czech Republic. Vegetation History and Archaeobotany, 23, 97–108. <https://doi.org/10.1007/s00334-014-0441-7>
73. ZAMANIAN, K., PUSTOVOYTOV, K., KUZYAKOV, Y. (2016): Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews, 157, 1–17. <https://doi.org/10.1016/j.earscirev.2016.03.003>
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive