Geografie 2019, 124, 103-131

https://doi.org/10.37040/geografie2019124020103

An instance-based scoring system for indoor landmark salience evaluation

Litao Zhu1,2,3, Hana Švedová4, Jie Shen1,2,3, Zdeněk Stachoň4, Jiafeng Shi1,2,3, Dajana Snopková4, Xiao Li1,2,3

1Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
2Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing, China
3School of Geography, Nanjing Normal University, Nanjing, China
4Masaryk University, Faculty of Science, Department of Geography, Brno, Czechia

Received November 2018
Accepted April 2019

References

1. BLAZHENKOVA, O., KOZHEVNIKOV, M. (2008): The New Object-Spatial-Verbal Cognitive Style Model: Theory and Measurement. Applied Cognitive Psychology, 23, 5, 638–663. <https://doi.org/10.1002/acp.1473>
2. CADUFF, D., TIMPF, S. (2008): On the assessment of landmark salience for human navigation. Cognitive processing, 9, 4, 249–267. <https://doi.org/10.1007/s10339-007-0199-2>
3. DUCKHAM, M., WINTER, S., ROBINSON, M. (2010): Including landmarks in routing instructions. Journal of Location Based Services, 4, 1, 28–52. <https://doi.org/10.1080/17489721003785602>
4. ELIAS, B. (2003): Extracting landmarks with data mining methods. In International Conference on Spatial Information Beory. Springer, Berlin, Heidelberg, 375–389. <https://doi.org/10.1007/978-3-540-39923-0_25>
5. FELLNER, I., HUANG, H., GARTNER, G. (2017): “Turn Leu auer the WC and Use the Liu to Go to the 2ⁿᵈ Floor” – Generation of Landmark-Based Route Instructions for Indoor Navigation. ISPRS International Journal of Geo-Information, 6, 6, 183. <https://doi.org/10.3390/ijgi6060183>
6. GOLLEDGE, R.G. (1999): Wayfinding behaviour. Cognitive mapping and other spatial processes. The John Hopkins University Press, Baltimore, MD.
7. HÖLSCHER, C., BRÖSAMLE, M. (2007): Capturing indoor wayfinding strategies and differences in spatial knowledge with space syntax. In 6ᵗh International Space Syntax Symposium, 043.01-043.12.
8. HUANG, H., GARTNER, G. (2010): A survey of mobile indoor navigation systems. In: Cartography in Central and Eastern Europe. Springer, Berlin, Heidelberg, 305–319. <https://doi.org/10.1007/978-3-642-03294-3_20>
9. HUND, A.M. (2016). Visuospatial working memory facilitates indoor wayfinding and direction giving. Journal of environmental psychology, 45, 233–238. <https://doi.org/10.1016/j.jenvp.2016.01.008>
10. JUST, M.A., CARPENTER, P.A. (1976): Eye Fixations and Cognitive Processes. Cognitive Psychology, 8, 4, 441–480. <https://doi.org/10.1016/0010-0285(76)90015-3>
11. KATO, Y., TAKEUCHI, Y. (2003): Individual differences in wayfinding strategies. Journal of Environmental Psychology, 23, 2, 171–188. <https://doi.org/10.1016/S0272-4944(03)00011-2>
12. KLEPEIS, N.E., NELSON, W.C., OTT, W.R., ROBINSON, J.P., TSANG, A.M., SWITZER, P., ENGELMANN, W.H. (2001): The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Science and Environmental Epidemiology, 11, 3, 231. <https://doi.org/10.1038/sj.jea.7500165>
13. KLIPPEL, A., WINTER, S. (2005): Structural salience of landmarks for route directions. In: International Conference on Spatial Information Theory. Springer, Berlin, Heidelberg, 347–362. <https://doi.org/10.1007/11556114_22>
14. LI, L., MAO, K., LI, G., WEN, Y. (2018): A Landmark-based cognition strength grid model for indoor guidance. Survey Review, 50, 361, 336–346. <https://doi.org/10.1080/00396265.2016.1277004>
15. LI, X., WU, X.Q., YIN, Z.H., SHEN, J. (2017): The influence of spatial familiarity on the landmark salience sensibility in pedestrian navigation environment. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42, 2, 83–89. <https://doi.org/10.5194/isprs-archives-XLII-2-W7-83-2017>
16. LORENZ, B., OHLBACH, H.J., STOFFEL, E.P. (2006): A hybrid spatial model for representing indoor environments. In International Symposium on Web and Wireless Geographical Information Systems. Springer, Berlin, Heidelberg, 102–112. <https://doi.org/10.1007/11935148_10>
17. LYNCH, K. (1960): The image of the city, 11.
18. LYU, H., YU, Z., MENG, L. (2015): A Computational Method for Indoor Landmark Extraction Progress in Location-Based Services 2014, Springer, 45–59. <https://doi.org/10.1007/978-3-319-11879-6_4>
19. MILLONIG, A., SCHECHTNER, K. (2007): Developing landmark-based pedestrian-navigation systems. IEEE Transactions on intelligent transportation systems, 8, 1, 43–49. <https://doi.org/10.1109/TITS.2006.889439>
20. MÜNZER, S., ZIMMER, H., SCHWALM, M., BAUS, J., ASLAN, I. (2006): Computer Assisted Navigation and the Acquisition of Route and Survey Knowledge. Journal of Environmental Psychology, 26, 300–308. <https://doi.org/10.1016/j.jenvp.2006.08.001>
21. NOTHEGGER, C., WINTER, S., RAUBAL, M. (2004): Selection of salient features for route directions. Spatial cognition and computation, 4, 2, 113–136. <https://doi.org/10.1207/s15427633scc0402_1>
22. OHM, C., MÜLLER, M., LUDWIG, B. (2015): Displaying landmarks and the user’s surroundings in indoor pedestrian navigation systems. Journal of Ambient Intelligence and Smart Environments, 7, 5, 635–657. <https://doi.org/10.3233/AIS-150335>
23. OKABE, A., AOKI, K., HAMAMOTO, W. (1986): Distance and Direction Judgment in a Large- Scale Natural Environment: Effects of a Slope and Winding Trail. Environment and Behavior, 18, 755–772. <https://doi.org/10.1177/0013916586186004>
24. PETERS, D., WU, Y., WINTER, S. (2010): Testing landmark identification theories in virtual environments. In International Conference on Spatial Cognition. Springer, Berlin, Heidelberg, 54–69. <https://doi.org/10.1007/978-3-642-14749-4_8>
25. PRESSON, C.C., MONTELLO, D.R. (1988): Points of reference in spatial cognition: Stalking the elusive landmark. British Journal of Developmental Psychology, 6, 4, 378–381. <https://doi.org/10.1111/j.2044-835X.1988.tb01113.x>
26. RADOCZKY, V. (2003): Cartographic support of route descriptions for pedestrian navigation systems. Completion Thesis, Vienna University of Technology.
27. RAUBAL, M. (2001): Human wayfinding in unfamiliar buildings: a simulation with a cognizing agent. Cognitive Processing, 2, 3, 363–388.
28. RAUBAL, M., EGENHOFER, M.J. (1998): Comparing the complexity of wayfinding tasks in built environments. Environment and Planning B: Planning and Design, 25, 6, 895–913. <https://doi.org/10.1068/b250895>
29. RAUBAL, M., WINTER, S. (2002): Enriching wayfinding instructions with local landmarks. In International conference on geographic information science. Springer, Berlin, Heidelberg, 243–259. <https://doi.org/10.1007/3-540-45799-2_17>
30. RICHTER, K.F., WINTER, S. (2014): Landmarks: GIScience for Intelligent Services. Springer Publishing Company, Incorporated.
31. RUSSO, D., ZLATANOVA, S., CLEMENTINI, E. (2014, November): Route directions generation using visible landmarks. In: Proceedings of the sixth ACM SIGSPATIAL international workshop on indoor spatial awareness, ACM, 1–8. <https://doi.org/10.1145/2676528.2676530>
32. SAATY, T.L. (1994): How to make a decision: the analytic hierarchy process. Interfaces, 24, 6, 19–43. <https://doi.org/10.1287/inte.24.6.19>
33. SIEGEL, A.W., WHITE, S.H. (1975): The development of spatial representations of large-scale environments. In Advances in child development and behaviour, 10, 9–55. <https://doi.org/10.1016/S0065-2407(08)60007-5>
34. SNOPKOVÁ, D., ŠVEDOVÁ, H., KUBÍČEK, P., STACHOŇ, Z. (2019): Navigation in Indoor Environments: Does the Type of Visual Learning Stimulus Matter? ISPRS International Journal of Geo-Information, 8, 6, 1–26. <https://doi.org/10.3390/ijgi8060251>
35. SORROWS, M.E., HIRTLE, S.C. (1999): The nature of landmarks for real and electronic spaces. In International Conference on Spatial Information Theory. Springer, Berlin, Heidelberg, 37–50. <https://doi.org/10.1007/3-540-48384-5_3>
36. ŠTĚRBA Z., ŠAŠINKA, Č., STACHOŇ, Z., ŠTAMPACH, R., MORONG, K. (2015): Selected Issues of Experimental Testing in Cartography. MU Brno. <https://doi.org/10.5817/CZ.MUNI.M210-7893-2015>
37. VAN GOG, T., KESTER, L., NIVELSTEIN, F., GIESBERS, B., PAAS, F. (2009): Uncovering cognitive processes: Different techniques that can contribute to cognitive load research and instruction. Computers in Human Behavior, 25, 2, 325–331. <https://doi.org/10.1016/j.chb.2008.12.021>
38. VIAENE, P., OOMS, K., VASTEENKISTE, P., LENOIR, M., E MAEYER, P. (2014): The use of eye tracking in search of indoor landmarks. Proceedings of the 2ⁿᵈ International Workshop on Eye Tracking for Spatial Research, ET4S 2014, Vienna, 52–56.
39. WENCZEL, F., HEPPERLE, L., VON STÜPNAGEL, R. (2017): Gaze behavior during incidental and intentional navigation in an outdoor environment, Spatial Cognition & Computation, 17, 1–2, 121–142. <https://doi.org/10.1080/13875868.2016.1226838>
40. WILLIAMS, A.M., DAVIDS, K. (1997): Assessing cue usage in performance contexts: A comparison between eye-movement and concurrent verbal report methods. Behavior Research Methods, 29, 3, 364–375. <https://doi.org/10.3758/BF03200589>
41. WINTER, S., TOMKO, M., ELIAS, B., SETER, M. (2008): Landmark hierarchies in context. Environment and Planning B: Planning and Design, 35, 3, 381–398. <https://doi.org/10.1068/b33106>
42. YANG, L., WORBOYS, M. (2011): A navigation ontology for outdoor-indoor space:(work-inprogress). In Proceedings of the 3rᵈ ACM SIGSPATIAL international workshop on indoor spatial awareness, ACM, 31–34. <https://doi.org/10.1145/2077357.2077364>
43. ZHANG, X., LI, Q., FANG, Z. (2010): An approach of generating landmark chain for pedestrian navigation applications. Geomatics and Information Science of Wuhan University, 35, 10, 1240–1244.
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive