Geografie 2005, 130, 65-91

https://doi.org/10.37040/geografie.2025.002

Appearances can be deceiving: The usability of photorealistic 3D geovisualisation in participatory urban planning

Lukáš Herman1ID, Barbora Plačková1, Jan Mikoláš1ID, Jakub Kura1,2ID, Dajana Snopková1ID

1Masaryk University, Faculty of Science, Department of Geography, Brno, Czechia
2Institute for Regional Information, Brno, Czechia

Received December 2024
Accepted March 2025

References

1. ATELIER PROREGIO S. R. O. (2023): Územní studie Otrokovice: Lokalita za Arboretem, https://www.otrokovice.cz/assets/File.ashx?id_org=11673&id_dokumenty=25233 (2. 12. 2024).
2. BANDROVA, T., BONCHEV, S. (2013): 3D Maps Scale, Accuracy, Level of Detail. 26th International Cartographic Conference, 25−30 August 2013, Dresden, Germany.
3. BILJECKI, F., STOTER, J., LEDOUX, H., ZLATANOVA, S., ÇÖLTEKIN, A. (2015): Applications of 3D city models: State of the art review. ISPRS International Journal of Geo-Information, 4, 4, 2842−2889. <https://doi.org/10.3390/ijgi4042842>
4. BILLGER, M., THUVANDER, L., WÄSTBERG, B.S. (2017): In search of visualization challenges: The development and implementation of visualization tools for supporting dialogue in urban planning processes. Environment and Planning B: Urban Analytics and City Science, 44, 6, 1012−1035. <https://doi.org/10.1177/0265813516657341>
5. BLEISCH, S. (2012): 3D Geovisualization – Definition and Structuresfor the Assessment of Usefulness. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I-2, 129−134. <https://doi.org/10.5194/isprsannals-I-2–129-2012>
6. BRNO CITY CHIEF ARCHITECT’S OFFICE, KAM (2019): 3D MODEL OF BRNO, https://webmaps.kambrno.cz/3d-model_en/ (2. 12. 2024).
7. Building Act No. 283/2021 Coll. (2021), https://www.zakonyprolidi.cz/cs/2021−283 (10. 12. 2024).
8. BURIAN, J., POPELKA, S., BEITLOVA, M. (2018): Evaluation of the cartographical quality of urban plans by eye-tracking. ISPRS International Journal of Geo-Information, 192, 7, 1−25. <https://doi.org/10.3390/ijgi7050192>
9. BURIAN, J., ŠŤÁVOVÁ, Z. (2009): The difficulties of using urban plans for cartographers and geoinformatists. Geografie, 114, 3, 179−191. <https://doi.org/10.37040/geografie2009114030179>
10. CARNEIRO, C. (2008): Communication and visualization of 3-D urban spatial data according to user requirements: case study of Geneva. Proceedings of the XXI ISPRS Congress, XXXVII, 631−636.
11. CHASSIN, T., INGENSAND, J., CHRISTOPHE, S., TOUYA, G. (2022): Experiencing virtual geographic environment in urban 3D participatory e-planning: A user perspective. Landscape and Urban Planning, December 2021, 224, 104432. <https://doi.org/10.1016/j.landurbplan.2022.104432>
13. CZECH STATISTICAL OFFICE (2025): Definitions, https://csu.gov.cz/2_definitions_(18. 2. 2025).
14. DENÍK VEŘEJNÉ SPRÁVY (2019): Budoucnost územního plánování leží ve 3D. Nabízí snadnější orientaci i představu o tom, co přinese nová výstavba, https://denik.obce.cz/clanek.asp?id=6785987 (3. 12. 2024).
15. DENWOOD, T., HUCK, J. J., LINDLEY, S. (2022): Effective PPGIS in spatial decision-making: Reflecting participant priorities by illustrating the implications of their choices. Transactions in GIS, 26, 2, 867−886. <https://doi.org/10.1111/tgis.12888>
16. DÖLLNER, J. (2007): Non-photorealistic 3D geovisualization. Multimedia Cartography: Second Edition. Springer Heidelberg, 229−240. <https://doi.org/10.1007/978-3-540-36651-5_16>
17. DOULA, A., KAUFMANN, P., GUINEA, A. S., MUHLHAUSER, M. (2022): Effects of the Level of Detail on the Recognition of City Landmarks in Virtual Environments. Proceedings – 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VRW 2022, 860−861. <https://doi.org/10.1109/VRW55335.2022.00281>
18. DUŠEK, R., MIŘIJOVSKÝ, J. (2009): Visualisation of geospatial data: chaos in the dimensions. Geografie, 114, 3, 169−178. <https://doi.org/10.37040/geografie2009114030169>
19. EILOLA, S., JAALAMA, K., KANGASSALO, P., NUMMI, P., STAFFANS, A., FAGERHOLM, N. (2023): 3D visualisations for communicative urban and landscape planning: What systematic mapping of academic literature can tell us of their potential? Landscape and Urban Planning, June 2022, 234, 104716. <https://doi.org/10.1016/j.landurbplan.2023.104716>
20. FAGERHOLM, N., RAYMOND, C.M., OLAFSSON, A.S., BROWN, G., RINNE, T., HASANZADEH, K., BROBERG, A., KYTTÄ, M. (2021): A methodological framework for analysis of participatory mapping data in research, planning, and management. International Journal of Geographical Information Science, 9, 35, 1848−1875. <https://doi.org/10.1080/13658816.2020.1869747>
21. FILA, M., ŠTAMPACH, R., STACHOŇ, Z. (2024): The role of level of detail in 3D cartographic visualizations. Geografie, 129, 2, 159−185. <https://doi.org/10.37040/geografie.2024.007>
22. GARDONY, A.L., HENDEL, D.D., BRUNYÉ, T.T. (2022): Identifying optimal graphical level of detail to support orienting with 3D geo-visualizations. Spatial Cognition and Computation, 22, 1−2, 135–160. <https://doi.org/10.1080/13875868.2021.1892696>
23. GATZIDIS, C., BRUJIC-OKRETIC, V., MASTROYANNI, M. (2009): Evaluation of Non-Photorealistic 3D Urban Models for Mobile Device Navigation. April, 18−31. <https://doi.org/10.1007/978-3-642-02771-0_20>
24. HÄBERLING, C., BÄR, H., HURNI, L. (2008): Proposed cartographic design principles for 3D maps: A contribution to an extended cartographic theory. Cartographica, 43, 3, 175−188. <https://doi.org/10.3138/carto.43.3.175>
25. HASANZADEH, K., FAGERHOLM, N., SKOV-PETERSEN, H., OLAFSSON, A.S. (2023): A methodological framework for analyzing PPGIS data collected in 3D. International Journal of Digital Earth, 1, 16, 3435−3455. <https://doi.org/10.1080/17538947.2023.2250739>
26. HAYEK, U.W. (2011): Which is the appropriate 3D visualization type for participatory landscape planning workshops? A portfolio of their effectiveness. Environment and Planning B: Planning and Design, 38, 5, 921−939. <https://doi.org/10.1068/b36113>
27. HERBERT, G., CHEN, X. (2015): A comparison of usefulness of 2D and 3D representations of urban planning. Cartography and Geographic Information Science, 42, 1, 22−32. <https://doi.org/10.1080/15230406.2014.987694>
28. INSTITUTE OF REGIONAL PLANNING PRAGUE (2024): 3D model of Prague, https://app.iprpraha.cz/apl/app/model3d/ (3. 12. 2024).
29. ISO (2019): ISO 9241−210. Ergonomics of Human-System Interaction – Part. 210: Human-Centred Design for Interactive Systems, https://www.iso.org/standard/77520.html (3. 12. 2024).
30. JAALAMA, K., FAGERHOLM, N., JULIN, A., VIRTANEN, J.P., MAKSIMAINEN, M., HYYPPÄ, H. (2021): Sense of presence and sense of place in perceiving a 3D geovisualization for communication in urban planning – Differences introduced by prior familiarity with the place. Landscape and Urban Planning, November 2020, 207. <https://doi.org/10.1016/j.landurbplan.2020.103996>
31. JAHNKE, M., KRISP, J.M., KUMKE, H. (2011): How many 3D city models are there? – A typological try. Cartographic Journal, 48, 2, 124−130. <https://doi.org/10.1179/1743277411Y.0000000010>
32. JUDGE, S., HARRIE, L. (2020): Visualizing a Possible Future: Map Guidelines for a 3D Detailed Development Plan. Journal of Geovisualization and Spatial Analysis, 4, 1. <https://doi.org/10.1007/s41651-020-00049-4>
33. JUŘÍK, V., HERMAN, L., ŠAŠINKA, C., STACHOŇ, Z., CHMELÍK, J., STRNADOVÁ, A., KUBÍČEK, P. (2018): Behavior Analysis in Virtual Geovisualizations: Towards Ecological Validity. 7th International Conference on Cartography and GIS, June, 1 and 2, 518−527.
34. KIBRIA, M. S., ZLATANOVA, S., ITARD, L., VAN DORST, M. (2009): GeoVEs as tools to communicate in urban projects: Requirements for functionality and visualization. Lecture Notes in Geoinformation and Cartography, 379−395. <https://doi.org/10.1007/978-3-540-87395-2_24>
35. KONEČNÝ, M. (2011): Cartography: Challenges and potential in the virtual geographic environments era. Annals of GIS, 17, 3, 135−146. <https://doi.org/10.1080/19475683.2011.602027>
36. LEE, J., YANG, B. (2019): Developing an optimized texture mapping for photorealistic 3D buildings. Transactions in GIS, 23, 1, 1−21. <https://doi.org/10.1111/tgis.12494>
37. LEVEND, S., FISCHER, THOMAS, B. (2023): Participatory Urban planning – introducing and testing a 2D/3D visualization and AHP framework. Megaron, 18, 2, 184−201. <https://doi.org/10.14744/megaron.2023.97947>
38. LOKKA, I.E., ÇÖLTEKIN, A. (2019): Toward optimizing the design of virtual environments for route learning: empirically assessing the effects of changing levels of realism on memory. International Journal of Digital Earth, 12, 2, 137−155. <https://doi.org/10.1080/17538947.2017.1349842>
39. LOVETT, A., APPLETON, K., WARREN-KRETZSCHMAR, B., VON HAAREN, C. (2015): Using 3D visualization methods in landscape planning: An evaluation of options and practical issues. Landscape and Urban Planning, 142, 85−94. <https://doi.org/10.1016/j.landurbplan.2015.02.021>
40. MACEACHREN, A.M., KRAAK, M.-J. (2001): Research Challenges in Geovisualization. Cartography and Geographic Information Science, 28, 1, 3−12. <https://doi.org/10.1559/152304001782173970>
41. MAGISTRÁT MĚSTA BRNA ODDĚLENÍ GIS (2024a): Územní plán města Brna, https://gis.brno.cz/mapa/upmb/?c=-597822.5%3A-1159214.3&z=4&lb=zm-brno-seda-all&ly=uln%2Cup18&lbo=1&lyo= (2. 12. 2024).
42. MAGISTRÁT MĚSTA BRNA ODDĚLENÍ GIS (2024b): Připravovaný Územní plán města Brna – Návrh pro veřejné projednání, https://gis.brno.cz/mapa/upmb-navrh/?c=-597822.5%3A1159214.3&z=4&lb=zm-brno-seda-all&ly=uln%2Cv21&lbo=1&lyo= (2. 12. 2024).
43. MARSHALL, S., FARNDON, D., HUDSON-SMITH, A., KOURNIOTIS, A., KARADIMITRIOU, N. (2024): Urban Design and Planning Participation in the Digital Age: Lessons from an Experimental Online Platform. Smart Cities, 7, 1, 615−632. <https://doi.org/10.3390/smartcities7010025>
44. ONYIMBI, J.R., KOEVA, M., FLACKE, J. (2018): Public participation using 3D web-based city models: Opportunities for e-participation in Kisumu, Kenya. ISPRS International Journal of Geo-Information, 7, 12, 1−20. <https://doi.org/10.3390/ijgi7120454>
45. OPEN GEOSPATIAL CONSORTIUM (2024): City Geography Markup Language (CityGML) Encoding Standard, https://www.ogc.org/standard/citygml/ (2. 12. 2024).
46. PLAČKOVÁ, B. (2025): Research on the implementation of interactive 3D models in the field of urban and spatial planning (Průzkum implementace interaktivních 3D modelů do oblasti územního a prostorového plánování). figshare. <https://doi.org/10.6084/m9.figshare.28436378.v1>
47. POPELKA, S., DĚDKOVÁ, P. (2014): Extinct village 3D visualization and its evaluation with eye-movement recording. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), PART 1, 8579 LNCS, 786−795. <https://doi.org/10.1007/978-3-319-09144-0_54>
48. RAUTENBACH, V., COETZEE, S., ÇÖLTEKIN, A. (2014): Towards evaluating the map literacy of planners in 2D maps and 3D models in South Africa. AfricaGEO 2014 Conference Proceedings, 1−12.
49. STATUTÁRNÍ MĚSTO BRNO (2022): Vrstevnice 2019 / Contours 2019, Magistrát města Brna – Otevřená data, https://data.brno.cz/datasets/46cddb79dde54338a3aaa56b6c4287f1_0/explore (2. 12. 2024).
50. VOŽENÍLEK, V. (2005): Cartography for GIS. Univerzita Palackého v Olomouci, Olomouc.
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive