Geografie 2005, 130, 65-91
https://doi.org/10.37040/geografie.2025.002
Appearances can be deceiving: The usability of photorealistic 3D geovisualisation in participatory urban planning
References
1. ATELIER PROREGIO S. R. O. (2023): Územní studie Otrokovice: Lokalita za Arboretem, https://www.otrokovice.cz/assets/File.ashx?id_org=11673&id_dokumenty=25233 (2. 12. 2024).
2. BANDROVA, T., BONCHEV, S. (2013): 3D Maps Scale, Accuracy, Level of Detail. 26th International Cartographic Conference, 25−30 August 2013, Dresden, Germany.
3. BILJECKI, F., STOTER, J., LEDOUX, H., ZLATANOVA, S., ÇÖLTEKIN, A. (2015): Applications of 3D city models: State of the art review. ISPRS International Journal of Geo-Information, 4, 4, 2842−2889.
<https://doi.org/10.3390/ijgi4042842>
4. BILLGER, M., THUVANDER, L., WÄSTBERG, B.S. (2017): In search of visualization challenges: The development and implementation of visualization tools for supporting dialogue in urban planning processes. Environment and Planning B: Urban Analytics and City Science, 44, 6, 1012−1035.
<https://doi.org/10.1177/0265813516657341>
5. BLEISCH, S. (2012): 3D Geovisualization – Definition and Structuresfor the Assessment of Usefulness. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I-2, 129−134.
<https://doi.org/10.5194/isprsannals-I-2–129-2012>
6. BRNO CITY CHIEF ARCHITECT’S OFFICE, KAM (2019): 3D MODEL OF BRNO, https://webmaps.kambrno.cz/3d-model_en/ (2. 12. 2024).
7. Building Act No. 283/2021 Coll. (2021), https://www.zakonyprolidi.cz/cs/2021−283 (10. 12. 2024).
8. BURIAN, J., POPELKA, S., BEITLOVA, M. (2018): Evaluation of the cartographical quality of urban plans by eye-tracking. ISPRS International Journal of Geo-Information, 192, 7, 1−25.
<https://doi.org/10.3390/ijgi7050192>
9. BURIAN, J., ŠŤÁVOVÁ, Z. (2009): The difficulties of using urban plans for cartographers and geoinformatists. Geografie, 114, 3, 179−191.
<https://doi.org/10.37040/geografie2009114030179>
10. CARNEIRO, C. (2008): Communication and visualization of 3-D urban spatial data according to user requirements: case study of Geneva. Proceedings of the XXI ISPRS Congress, XXXVII, 631−636.
11. CHASSIN, T., INGENSAND, J., CHRISTOPHE, S., TOUYA, G. (2022): Experiencing virtual geographic environment in urban 3D participatory e-planning: A user perspective. Landscape and Urban Planning, December 2021, 224, 104432.
<https://doi.org/10.1016/j.landurbplan.2022.104432>
12. CZECH OFFICE FOR SURVEYING MAPPING AND CADASTRE (2024): WMS view service – Orthophoto, https://geoportal.cuzk.cz/(S(bowxsndpqogcayvjnsso051q))/Default.aspx?lng=EN&mode=TextMeta&side=wms.verejne&metadataID=CZ-CUZK-WMS-ORTOFOTOP&metadataXSL=metadata.sluzba&head_tab=sekce-03-gp&menu=3121 (2. 12. 2024).
13. CZECH STATISTICAL OFFICE (2025): Definitions, https://csu.gov.cz/2_definitions_(18. 2. 2025).
14. DENÍK VEŘEJNÉ SPRÁVY (2019): Budoucnost územního plánování leží ve 3D. Nabízí snadnější orientaci i představu o tom, co přinese nová výstavba, https://denik.obce.cz/clanek.asp?id=6785987 (3. 12. 2024).
15. DENWOOD, T., HUCK, J. J., LINDLEY, S. (2022): Effective PPGIS in spatial decision-making: Reflecting participant priorities by illustrating the implications of their choices. Transactions in GIS, 26, 2, 867−886.
<https://doi.org/10.1111/tgis.12888>
16. DÖLLNER, J. (2007): Non-photorealistic 3D geovisualization. Multimedia Cartography: Second Edition. Springer Heidelberg, 229−240.
<https://doi.org/10.1007/978-3-540-36651-5_16>
17. DOULA, A., KAUFMANN, P., GUINEA, A. S., MUHLHAUSER, M. (2022): Effects of the Level of Detail on the Recognition of City Landmarks in Virtual Environments. Proceedings – 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VRW 2022, 860−861.
<https://doi.org/10.1109/VRW55335.2022.00281>
18. DUŠEK, R., MIŘIJOVSKÝ, J. (2009): Visualisation of geospatial data: chaos in the dimensions. Geografie, 114, 3, 169−178.
<https://doi.org/10.37040/geografie2009114030169>
19. EILOLA, S., JAALAMA, K., KANGASSALO, P., NUMMI, P., STAFFANS, A., FAGERHOLM, N. (2023): 3D visualisations for communicative urban and landscape planning: What systematic mapping of academic literature can tell us of their potential? Landscape and Urban Planning, June 2022, 234, 104716.
<https://doi.org/10.1016/j.landurbplan.2023.104716>
20. FAGERHOLM, N., RAYMOND, C.M., OLAFSSON, A.S., BROWN, G., RINNE, T., HASANZADEH, K., BROBERG, A., KYTTÄ, M. (2021): A methodological framework for analysis of participatory mapping data in research, planning, and management. International Journal of Geographical Information Science, 9, 35, 1848−1875.
<https://doi.org/10.1080/13658816.2020.1869747>
21. FILA, M., ŠTAMPACH, R., STACHOŇ, Z. (2024): The role of level of detail in 3D cartographic visualizations. Geografie, 129, 2, 159−185.
<https://doi.org/10.37040/geografie.2024.007>
22. GARDONY, A.L., HENDEL, D.D., BRUNYÉ, T.T. (2022): Identifying optimal graphical level of detail to support orienting with 3D geo-visualizations. Spatial Cognition and Computation, 22, 1−2, 135–160.
<https://doi.org/10.1080/13875868.2021.1892696>
23. GATZIDIS, C., BRUJIC-OKRETIC, V., MASTROYANNI, M. (2009): Evaluation of Non-Photorealistic 3D Urban Models for Mobile Device Navigation. April, 18−31.
<https://doi.org/10.1007/978-3-642-02771-0_20>
24. HÄBERLING, C., BÄR, H., HURNI, L. (2008): Proposed cartographic design principles for 3D maps: A contribution to an extended cartographic theory. Cartographica, 43, 3, 175−188.
<https://doi.org/10.3138/carto.43.3.175>
25. HASANZADEH, K., FAGERHOLM, N., SKOV-PETERSEN, H., OLAFSSON, A.S. (2023): A methodological framework for analyzing PPGIS data collected in 3D. International Journal of Digital Earth, 1, 16, 3435−3455.
<https://doi.org/10.1080/17538947.2023.2250739>
26. HAYEK, U.W. (2011): Which is the appropriate 3D visualization type for participatory landscape planning workshops? A portfolio of their effectiveness. Environment and Planning B: Planning and Design, 38, 5, 921−939.
<https://doi.org/10.1068/b36113>
27. HERBERT, G., CHEN, X. (2015): A comparison of usefulness of 2D and 3D representations of urban planning. Cartography and Geographic Information Science, 42, 1, 22−32.
<https://doi.org/10.1080/15230406.2014.987694>
28. INSTITUTE OF REGIONAL PLANNING PRAGUE (2024): 3D model of Prague, https://app.iprpraha.cz/apl/app/model3d/ (3. 12. 2024).
29. ISO (2019): ISO 9241−210. Ergonomics of Human-System Interaction – Part. 210: Human-Centred Design for Interactive Systems, https://www.iso.org/standard/77520.html (3. 12. 2024).
30. JAALAMA, K., FAGERHOLM, N., JULIN, A., VIRTANEN, J.P., MAKSIMAINEN, M., HYYPPÄ, H. (2021): Sense of presence and sense of place in perceiving a 3D geovisualization for communication in urban planning – Differences introduced by prior familiarity with the place. Landscape and Urban Planning, November 2020, 207.
<https://doi.org/10.1016/j.landurbplan.2020.103996>
31. JAHNKE, M., KRISP, J.M., KUMKE, H. (2011): How many 3D city models are there? – A typological try. Cartographic Journal, 48, 2, 124−130.
<https://doi.org/10.1179/1743277411Y.0000000010>
32. JUDGE, S., HARRIE, L. (2020): Visualizing a Possible Future: Map Guidelines for a 3D Detailed Development Plan. Journal of Geovisualization and Spatial Analysis, 4, 1.
<https://doi.org/10.1007/s41651-020-00049-4>
33. JUŘÍK, V., HERMAN, L., ŠAŠINKA, C., STACHOŇ, Z., CHMELÍK, J., STRNADOVÁ, A., KUBÍČEK, P. (2018): Behavior Analysis in Virtual Geovisualizations: Towards Ecological Validity. 7th International Conference on Cartography and GIS, June, 1 and 2, 518−527.
34. KIBRIA, M. S., ZLATANOVA, S., ITARD, L., VAN DORST, M. (2009): GeoVEs as tools to communicate in urban projects: Requirements for functionality and visualization. Lecture Notes in Geoinformation and Cartography, 379−395.
<https://doi.org/10.1007/978-3-540-87395-2_24>
35. KONEČNÝ, M. (2011): Cartography: Challenges and potential in the virtual geographic environments era. Annals of GIS, 17, 3, 135−146.
<https://doi.org/10.1080/19475683.2011.602027>
36. LEE, J., YANG, B. (2019): Developing an optimized texture mapping for photorealistic 3D buildings. Transactions in GIS, 23, 1, 1−21.
<https://doi.org/10.1111/tgis.12494>
37. LEVEND, S., FISCHER, THOMAS, B. (2023): Participatory Urban planning – introducing and testing a 2D/3D visualization and AHP framework. Megaron, 18, 2, 184−201.
<https://doi.org/10.14744/megaron.2023.97947>
38. LOKKA, I.E., ÇÖLTEKIN, A. (2019): Toward optimizing the design of virtual environments for route learning: empirically assessing the effects of changing levels of realism on memory. International Journal of Digital Earth, 12, 2, 137−155.
<https://doi.org/10.1080/17538947.2017.1349842>
39. LOVETT, A., APPLETON, K., WARREN-KRETZSCHMAR, B., VON HAAREN, C. (2015): Using 3D visualization methods in landscape planning: An evaluation of options and practical issues. Landscape and Urban Planning, 142, 85−94.
<https://doi.org/10.1016/j.landurbplan.2015.02.021>
40. MACEACHREN, A.M., KRAAK, M.-J. (2001): Research Challenges in Geovisualization. Cartography and Geographic Information Science, 28, 1, 3−12.
<https://doi.org/10.1559/152304001782173970>
41. MAGISTRÁT MĚSTA BRNA ODDĚLENÍ GIS (2024a): Územní plán města Brna, https://gis.brno.cz/mapa/upmb/?c=-597822.5%3A-1159214.3&z=4&lb=zm-brno-seda-all&ly=uln%2Cup18&lbo=1&lyo= (2. 12. 2024).
42. MAGISTRÁT MĚSTA BRNA ODDĚLENÍ GIS (2024b): Připravovaný Územní plán města Brna – Návrh pro veřejné projednání, https://gis.brno.cz/mapa/upmb-navrh/?c=-597822.5%3A1159214.3&z=4&lb=zm-brno-seda-all&ly=uln%2Cv21&lbo=1&lyo= (2. 12. 2024).
43. MARSHALL, S., FARNDON, D., HUDSON-SMITH, A., KOURNIOTIS, A., KARADIMITRIOU, N. (2024): Urban Design and Planning Participation in the Digital Age: Lessons from an Experimental Online Platform. Smart Cities, 7, 1, 615−632.
<https://doi.org/10.3390/smartcities7010025>
44. ONYIMBI, J.R., KOEVA, M., FLACKE, J. (2018): Public participation using 3D web-based city models: Opportunities for e-participation in Kisumu, Kenya. ISPRS International Journal of Geo-Information, 7, 12, 1−20.
<https://doi.org/10.3390/ijgi7120454>
45. OPEN GEOSPATIAL CONSORTIUM (2024): City Geography Markup Language (CityGML) Encoding Standard, https://www.ogc.org/standard/citygml/ (2. 12. 2024).
46. PLAČKOVÁ, B. (2025): Research on the implementation of interactive 3D models in the field of urban and spatial planning (Průzkum implementace interaktivních 3D modelů do oblasti územního a prostorového plánování). figshare.
<https://doi.org/10.6084/m9.figshare.28436378.v1>
47. POPELKA, S., DĚDKOVÁ, P. (2014): Extinct village 3D visualization and its evaluation with eye-movement recording. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), PART 1, 8579 LNCS, 786−795.
<https://doi.org/10.1007/978-3-319-09144-0_54>
48. RAUTENBACH, V., COETZEE, S., ÇÖLTEKIN, A. (2014): Towards evaluating the map literacy of planners in 2D maps and 3D models in South Africa. AfricaGEO 2014 Conference Proceedings, 1−12.
49. STATUTÁRNÍ MĚSTO BRNO (2022): Vrstevnice 2019 / Contours 2019, Magistrát města Brna – Otevřená data, https://data.brno.cz/datasets/46cddb79dde54338a3aaa56b6c4287f1_0/explore (2. 12. 2024).
50. VOŽENÍLEK, V. (2005): Cartography for GIS. Univerzita Palackého v Olomouci, Olomouc.