Geografie 2024, 129, 159-185

https://doi.org/10.37040/geografie.2024.007

The role of level of detail in 3D cartographic visualizations

Milan FilaID, Radim ŠtampachID, Zdeněk StachoňID

Masaryk University, Faculty of Science, Department of Geography, Brno, Czechia

Received August 2023
Accepted February 2024

References

1. 3D WAREHOUSE (2020): Trimble. https://3dwarehouse.sketchup.com/ (4. 4. 2023).
2. ABUALDENIEN, J., BORRMANN, A. (2022): Levels of detail, development, definition, and information need: a critical literature review. Journal of Information Technology in Construction, 27, 363−392. <https://doi.org/10.36680/j.itcon.2022.018>
3. BANDROVA, T., BONCHEV, S. (2013): 3D Maps – Scale, Accuracy, Level of Detail. Proceedings of the 26th International Cartographic Conference Dresden. http://icaci.org/files/documents/ICC_proceedings/ICC2013/_extendedAbstract/76_proceeding.pdf
4. BERTIN, J. (1983): Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin Press, Madison.
5. BILJECKI, F., LEDOUX, H., STOTER, J., VOSSELMAN, G. (2016): The variants of an LOD of a 3D building model and their influence on spatial analyses. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 2016, 42−54. <https://doi.org/10.1016/j.isprsjprs.2016.03.003>
6. BILJECKI, F., LEDOUX, H., STOTER, J. (2017): Does a Finer Level of Detail of a 3D City Model Bring an Improvement for Estimating Shadows? In: Abdul-Rahman, A. (ed.): Advances in 3D Geoinformation. Cham: Springer International Publishing, 31−47. <https://doi.org/10.1007/978-3-319-25691-7_2>
7. BOETERS, R., ARROYO OHORI, K., BILJECKI, F., ZLATANOVA, S. (2015): Automatically enhancing CityGML LOD2 models with a corresponding indoor geometry. International Journal of Geographical Information Science, 29, 2248−2268. <https://doi.org/10.1080/13658816.2015.1072201>
8. CHASSIN, T., INGENSAND, J., CRISTOPHE, S., TOUYA, G. (2022): Experiencing virtual geographic environment in urban 3D participatory e-planning: A user perspective. Landscape and Urban Planning, 224, 2022, 104432. <https://doi.org/10.1016/j.landurbplan.2022.104432>
9. ÇÖLTEKIN, A. (2015): Mix well before use: Understanding the key ingredients of user studies. ICC2015 Workshop on Envisioning the Future of Cartographic Research. http://coltekin.net/arzu/publications/coltekin-2015-curitiba-position-paper.pdf
10. ÇÖLTEKIN, A., LOKKA, I., ZAHNER, M. (2016): On the usability and usefulness of 3D (geo) visualisations: A focus on virtual reality environments. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41-B2, 23, 387−392. <https://doi.org/10.5194/isprs-archives-XLI-B2-387-2016>
11. COWAN, N. (2001): The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 1, 87−114. <https://doi.org/10.1017/S0140525X01003922>
12. DENNEHY, M.T., NESBITT, D.W., SUMEY, R.A. (1994): Real-time three-dimensional graphics display for antiair warfare command and control. Johns Hopkins APL Technical Digest, 15, 2, 110−119.
13. DOULA, A., KAUFMANN, P., GUINEA, A.S., MÜHLHÄUSER, M. (2022): Effects of the Level of Detail on the Recognition of City Landmarks in Virtual Environments, 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Christchurch, New Zealand, 2022, 860−861. <https://doi.org/10.1109/VRW55335.2022.00281>
14. EASTMAN, C.M., EASTMAN, C., TEICHOLZ, P., SACKS, R., LISTON, K. (2011): BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors. John Wiley & Sons: Hoboken, NJ, USA.
15. EDLER, D., HUSAR, A., KEIL, J., VETTER, M., DICKMANN, F. (2018): Virtual Reality (VR) and Open Source Software: A Workflow for Constructing an Interactive Cartographic VR Environment to Explore Urban Landscapes. KN – Journal of Cartography and Geographic Information, 68, 5−13. <https://doi.org/10.1007/BF03545339>
16. FOSSE, J.M., CENTENO, J., SLUTER, C.R. (2009): A study of symbology as an element of cartographic language for three-dimensional representation. Boletim de Ciencias Geodesicas, 15, 3, 313−332.
17. GARDONY, A.L., HENDEL, D.D., BRUNYÉ, T.T. (2022): Identifying optimal graphical level of detail to support orienting with 3D geo-visualisations. Spatial Cognition & Computation, 22:1−2, 135–160. <https://doi.org/10.1080/13875868.2021.1892696>
18. GIANNOPOULOS, I., KIEFER, P., RAUBAL, M., RICHTER, K.-F., THRASH, T. (2014): Wayfinding Decision Situations: A Conceptual Model and Evaluation. In: Duckham, M. et al. (eds.) Geographic Information Science. Cham: Springer International Publishing, 221−234. <https://doi.org/10.1007/978-3-319-11593-1_15>
19. HERFORT, B., LAUTENBACH, S., PORTO DE ALBUQUERQUE, J., ZIPF, A. (2021): The evolution of humanitarian mapping within the OpenStreetMap community. Sci Rep, 11, 3037 (2021). <https://doi.org/10.1038/s41598-021-82404-z>
20. HERMAN, L., JUŘÍK, V., SNOPKOVÁ, D., CHMELÍK, J., UGWITZ, P., STACHOŇ, Z., ŠAŠINKA, Č., ŘEZNÍK, T. (2021): A Comparison of Monoscopic and Stereoscopic 3D Visualizations: Effect on Spatial Planning in Digital Twins. Remote Sens., 2021, 13, 2976. <https://doi.org/10.3390/rs13152976>
21. HERMAN, L., KVARDA, O., STACHOŇ, Z. (2018): Cheap and immersive virtual reality: application in cartography. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4, 261–266. <https://doi.org/10.5194/isprs-archives-XLII-4-261-2018>
22. HILDEBRANDT, D., TIMM, R. (2014): An Assisting, Constrained 3D Navigation Technique for Multiscale Virtual 3D City Models. GeoInformatica, 18, 537−567. <https://doi.org/10.1007/s10707-013-0189-8>
23. ISO/TS 20282-2 (2013): ISO/TS 20282-2: Usability of consumer products and products for public use. https://www.iso.org/obp/ui/#iso:std:iso:ts:20282:-2:ed-2:v1:en (1. 3. 2023).
24. JOHARI, F., MUNKHAMMAR, J., SHADRAM, F., WIDÉN, J. (2022): Evaluation of simplified building energy models for urban-scale energy analysis of buildings. Building and Environment, 211, 2022, 108684. <https://doi.org/10.1016/j.buildenv.2021.108684>
25. JOKISCH, M., BARTOSCHEK, T., SCHWERING, A. (2011): Usability Testing of the Interaction of Novices with a Multi-touch Table in Semi Public Space. In: Jacko, J. A. (ed.) Human-Computer Interaction. Interaction Techniques and Environments. Springer, Berlin, Heidelberg, 71−80. <https://doi.org/10.1007/978-3-642-21605-3_8>
26. KIBRIA, M.S., ZLATANOVA, S., ITARD, L., VAN DORST, M. (2009): GeoVEs as Tools to Communicate in Urban Projects: Requirements for Functionality and Visualization. In: Lee, J., Zlatanova, S. (eds): 3D Geo-Information Sciences. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. <https://doi.org/10.1007/978-3-540-87395-2_24>
27. KUBÍČEK, P., ŠAŠINKA, Č., STACHOŇ, Z., HERMAN, L., JUŘÍK, V., URBÁNEK, T., CHMELÍK, J. (2017): Identification of Altitude Profiles in 3D Geovisualizations: The Role of Interaction and Spatial Abilities. International Journal of Digital Earth, 12, 2, 156−172. <https://doi.org/10.1080/17538947.2017.1382581>
28. LIAO, H., DONG, W. (2017): An Exploratory Study Investigating Gender Effects on Using 3D Maps for Spatial Orientation in Wayfinding. ISPRS International Journal of Geo-Information, 6, 3, 60. <https://doi.org/10.3390/ijgi6030060>
29. LOKKA, I.E., ÇÖLTEKIN, A. (2017): Toward Optimising the Design of Virtual Environments for Route Learning: Empirically Assessing the Effects of Changing Levels of Realism on Memory. International Journal of Digital Earth, 12, 2, 137−155. <https://doi.org/10.1080/17538947.2017.1349842>
30. LOKKA, I.E., ÇÖLTEKIN, A., WIENER, J., FABRIKANT, S.I., RÖCKE, C. (2018): Virtual environments as memory training devices in navigational tasks for older adults. Scientific Reports, 8, 10809. <https://doi.org/10.1038/s41598-018-29029-x>
31. LOOMIS, J.M., BLASCOVICH, J.J., BEALL, A.C. (1999): Immersive virtual environment technology as a basic research tool in psychology. Behavior Research Methods, Instruments, & Computers, 31, 557−564. <https://doi.org/10.3758/BF03200735>
32. MACEACHREN, A.M. (2004): How maps work: Representation, visualisation, and design. Pbk. ed. New York: Guilford Press.
33. MARTIN, D.W. (2008): Doing psychology experiments. 7th ed. Pacific Grove, Calif.: Brooks/ Cole Pub. Co.
34. MÁLEK, F. (2017): Users’ issues of 3D visualisation. Diploma thesis. Masaryk University, Faculty of Science. Brno.
35. MUŇOZ-BAŇÓN, M.Á., VELASCO-SÁNCHEZ, E., CANDELAS, F.A., TORRES, F. (2022): OpenStreetMap-Based Autonomous Navigation With LiDAR Naive-Valley-Path Obstacle Avoidance. IEEE Transactions on Intelligent Transportation Systems, 23, 12, 24428−24438. <https://doi.org/10.1109/TITS.2022.3208829>
36. OPENSTREETMAP (2023): OpenStreetMap. https://www.openstreetmap.org/#map=14/49.9898/17.4612 (4. 4. 2023).
37. OGC (2023): City Geography Markup Language (CityGML) Encoding Standard; Open Geospatial Consortium. 2023. https://www.ogc.org/standard/citygml/ (1. 3. 2023).
38. PETERS, S., JAHNKE, M., MURPHY, C.E., MENG, L., ABDUL-RAHMAN, A. (2016): Cartographic Enrichment of 3D City Models – State of the Art and Research Perspectives. In: Abdul-Rahman, A. (ed.): Advances in 3D Geoinformation. Berlin: Springer International Publishing, 207−230. <https://doi.org/10.1007/978-3-319-25691-7_12>
39. POPELKA, S., BRYCHTOVÁ, A. (2013): Eye-tracking Study on Different Perception of 2D and 3D Terrain Visualisation. Cartographic Journal, 50, 3, 240−375. <https://doi.org/10.1179/1743277413Y.0000000058>
40. RANJBAR, H.R., GHARANGOZLOU, A.R., NEJAD, A.R.V. (2012): 3D analysis and investigation of traffic noise impact from Hemmat highway located in Tehran on buildings and surrounding areas. Journal of Geographic Information System, 4, 322−334. <https://doi.org/10.4236/jgis.2012.44037>
41. ROTH, R.E. (2016): Quantitative vs. Qualitative User Research: selecting the right approach. Interactive Workshop on Designing & Conducting User Studies. https://www.slideshare.net/UUUIICA/2016-iccgis-module2mixedmethods
42. SAMSONOV, T. (2022): Granularity of Digital Elevation Model and Optimal Level of Detail in Small-Scale Cartographic Relief Presentation, Remote Sens. 2022, 14, 5, 1270. <https://doi.org/10.3390/rs14051270>
43. SEIPEL, S. (2013): Evaluating 2D and 3D geovisualisations for basic spatial assessment. Behavior & Information Technology, 32, 8, 845−858. <https://doi.org/10.1080/0144929X.2012.661555>
44. SHEPHERD, I.D.H. (2008): Travails in the Third Dimension: A Critical Evaluation of Three- Dimensional Geographical Visualization. In: Dodge, M., McDerby, M., Turner, M. (eds.): Geographic Visualisation: Concepts, Tools and Applications. John Wiley & Sons, Ltd, 199−222. <https://doi.org/10.1002/9780470987643.ch10>
45. SHI, Y., BOFFI, M., PIGA, B.E.A., MUSSONE, L., CARUSO, G. (2022): Perception of Driving Simulations: Can the Level of Detail of Virtual Scenarios Affect the Driver’s Behavior and Emotions? IEEE Transactions on Vehicular Technology, 71, 4, 3429−3442. <https://doi.org/10.1109/TVT.2022.3152980>
46. SMALLMAN, H.S., JOHN, M.S. (2005): Naive Realism: Misplaced Faith in Realistic Displays. Ergonomics in Design, 13, 3, 6−13. <https://doi.org/10.1177/106480460501300303>
47. STACHOŇ, Z., KUBÍČEK, P., HERMAN, L. (2020): Virtual and Immersive Environments. The Geographic Information Science & Technology Body of Knowledge (3rd Quarter 2020 Edition). <https://doi.org/10.22224/gistbok/2020.3.9>
48. STACHOŇ, Z., KUBÍČEK, P., MÁLEK, F., KREJČÍ, M., HERMAN, L. (2018): The Role of Hue and Realism in Virtual Reality. In: Bandrova, T., Konečný, M. (eds.): Proceedings, 7th International Conference on Cartography and GIS, 2, 932−941.
49. SUN, Q., ZHOU, X., HOU, D. (2020): A Simplified CityGML-Based 3D Indoor Space Model for Indoor Applications. Applied Sciences, 10, 20, 7218. <https://doi.org/10.3390/app10207218>
50. ŠPRIŇAROVÁ, K., JUŘÍK, V., ŠAŠINKA, C., HERMAN, L., ŠTĚRBA, Z., STACHOŇ, Z., CHMELÍK, J., KOZLÍKOVÁ, B. (2015): Human-computer Interaction in Real-3D and Pseudo-3D Cartographic Visualization: A Comparative Study. In: Sluter, C.R. et al. (eds.): Cartography – Maps Connecting the World. Springer, Cham. <https://doi.org/10.1007/978-3-319-17738-0_5>
51. ŠTAMPACH, R., HERMAN, L., TROJAN J., TAJOVSKÁ, K., ŘEZNÍK T. (2021): Humanitarian Mapping as a Contribution to Achieving Sustainable Development Goals: Research into the Motivation of Volunteers and the Ideal Setting of Mapathons. Sustainability, MDPI, 2021, 13, 24, 13991−14014. <https://doi.org/10.3390/su132413991>
52. ŠTĚRBA, Z., ŠAŠINKA, Č., STACHOŇ, Z., ŠTAMPACH, R., MORONG, K. (2015): Selected Issues of Experimental Testing in Cartography. Brno: muniPRESS. <https://doi.org/10.5817/CZ.MUNI.M210-7893-2015>
53. TASHAKKORI, H., RAJABIFARD, A., KALANTARI, M. (2015): A new 3D indoor/outdoor spatial model for indoor emergency response facilitation. Building and Environment, 89, 2015, 170−182. <https://doi.org/10.1016/j.buildenv.2015.02.036>
54. TORRES, J., TEN, M., ZARZOSO, J., SALOM, L., GAITÁN R., LLUCH, J. (2013): Comparative Study of Stereoscopic Techniques Applied to a Virtual Globe. Cartographic Journal, 50, 4, 369−375. <https://doi.org/10.1179/1743277413Y.0000000034>
55. UGWITZ, P. (2022): Facilitating and Evaluating User Behavior In Virtual 3D Environments. Brno. PhD thesis. Masaryk University.
56. UGWITZ, P., JUŘÍK, V., HERMAN, L., STACHOŇ, Z., KUBÍČEK, P., ŠAŠINKA, Č. (2019): Spatial Analysis of Navigation in Virtual Geographic Environments. Applied Sciences, 9, 1873. <https://doi.org/10.3390/app9091873>
57. UNITY ASSET STORE (2020): Unity Technologies. https://assetstore.unity.com/ (4. 4. 2022).
58. WANG, L., GROVES, P.D., ZIEBART, M.K. (2013): GNSS shadow matching: improving urban positioning accuracy using a 3D city model with optimised visibility scoring scheme. Navigation, 60, 195−207. <https://doi.org/10.1002/navi.38>
59. YAAGOUBI, R., YARMANI, M., KAMEL, A., KHEMIRI, W. (2015): HybVOR: a voronoi-based 3D GIS approach for camera surveillance network placement. ISPRS Int. J. Geo-Inform., 4, 754−782. <https://doi.org/10.3390/ijgi4020754>
60. YU, M., LAFARGE, F., OESAU, S., HILAIRE, B. (2022): Repairing geometric errors in 3D urban models with kinetic data structures. ISPRS Journal of Photogrammetry and Remote Sensing, 192, 315−326. <https://doi.org/10.1016/j.isprsjprs.2022.08.001>
61. ZANOLA, S., FABRIKANT, S.I., ÇÖLTEKIN, A. (2009): The Effect of Realism on the Confidence in Spatial Data Quality in Stereoscopic 3D Displays. In: 24th International Cartography Conference, Santiago (Chile).
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive