Geografie 2024, 129, 119-143

https://doi.org/10.37040/geografie.2024.009

Atmospheric fronts from a climatologist's perspective: A review

Denisa Navrátilová1,2ID, Radan Huth1,2ID

1Charles University, Faculty of Science, Department of Physical Geography and Geoecology, Prague, Czechia
2The Czech Academy of Sciences, Institute of Atmospheric Physics, Prague, Czechia

Received June 2023
Accepted February 2024

References

1. ANDERSON, R., BOVILLE, B.W., MCCLELLAN, D.E. (1955): An operational frontal contour analysis model. Quarterly Journal of the Royal Meteorological Society, 81, 350, 588−599. <https://doi.org/10.1002/qj.49708135008>
2. ANDERSON, R., BOVILLE, B.W., MCCLELLAN, D.E. (1956): Discussion on “An operational frontal contour-analysis model”. Quarterly Journal of the Royal Meteorological Society, 82, 352, 244−246. <https://doi.org/10.1002/qj.49708235213>
3. BERRY, G., REEDER, M.J., JAKOB, C. (2011): A global climatology of atmospheric fronts. Geophysical Research Letters, 38, 4, 1−5. <https://doi.org/10.1029/2010GL046451>
4. BERRY, G., JAKOB, C., REEDER, M. (2011): Recent global trends in atmospheric fronts. Geophysical Research Letters, 38, 21, 1−6. <https://doi.org/10.1029/2011GL049481>
5. BIARD, J.C., KUNKEL, K.E. (2019): Automated detection of weather fronts using a deep learning neural network, Advances in Statistical Climatology, Meteorology and Oceanography, 5, 2, 147−160. <https://doi.org/10.5194/ascmo-5-147-2019>
6. BJERKNES, J., SOLBERG, H. (1922): Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofysiske Publikasjoner, 1, 3, 1−18.
7. BLÁZQUEZ, J., SOLMAN, S.A. (2016): Intraseasonal variability of wintertime frontal activity and its relationship with precipitation anomalies in the vicinity of South America. Climate Dynamics, 46, 7, 2327−2336. <https://doi.org/10.1007/s00382-015-2704-0>
8. BLÁZQUEZ, J., SOLMAN, S.A. (2017): Interannual variability of the frontal activity in the Southern Hemisphere: relationship with atmospheric circulation and precipitation over southern South America. Climate Dynamics, 48, 7, 2569−2579. <https://doi.org/10.1007/s00382-016-3223-3>
9. BLÁZQUEZ, J., SOLMAN, S.A. (2018): Fronts and precipitation in CMIP5 models for the austral winter of the Southern Hemisphere. Climate Dynamics, 50, 7, 2705−2717. <https://doi.org/10.1007/s00382-017-3765-z>
10. BLÁZQUEZ, J., SOLMAN, S.A. (2019): Relationship between projected changes in precipitation and fronts in the austral winter of the Southern Hemisphere from a suite of CMIP5 models. Climate Dynamics, 52, 9, 5849−5860. <https://doi.org/10.1007/s00382-018-4482-y>
11. BROWNING, K.A. (1986): Conceptual models of precipitation systems. Weather and forecasting, 1, 1, 23−41. <https://doi.org/10.1175/1520-0434(1986)0012.0.CO;2>
12. BROWNING, K.A. (1990): Organization of clouds and precipitation in extratropical cyclones. In: Newton, C.W., Holopainen, E.O. (eds.): Extratropical Cyclones: The Erik Palmén Memorial Volume, American Meteorological Society, 129−154. <https://doi.org/10.1007/978-1-944970-33-8_8>
13. CARLSON, T.N. (1980): Airflow Through Midlatitude Cyclones and the Comma Cloud Pattern. Monthly Weather Review, 108, 10, 1498−1509. <https://doi.org/10.1175/1520-0493(1980)1082.0.CO;2>
14. CATTO, J.L., JAKOB, C., BERRY, G., NICHOLLS, N. (2012): Relating global precipitation to atmospheric fronts. Geophysical Research Letters, 39, 10, 1−6. <https://doi.org/10.1029/2012GL051736>
15. CATTO, J.L., JAKOB, C., NICHOLLS, N. (2013): A global evaluation of fronts and precipitation in the ACCESS model. Australian Meteorological and Oceanographic Journal, 63, 191−203. <https://doi.org/10.22499/2.6301.012>
16. CATTO, J.L., PFAHL, S. (2013): The importance of fronts for extreme precipitation. Journal of Geophysical Research: Atmospheres, 118, 19, 10791−10801. <https://doi.org/10.1002/jgrd.50852>
17. CATTO, J.L., NICHOLLS, N., JAKOB, C., SHELTON, K.L. (2014): Atmospheric fronts in current and future climates. Geophysical Research Letters, 41, 21, 7642−7650. <https://doi.org/10.1002/2014GL061943>
18. CATTO, J.L., MADONNA, E., JOOS, H., RUDEVA, I., SIMMONDS, I. (2015): Global relationship between fronts and warm conveyor belts and the impact on extreme precipitation. Journal of Climate, 28, 21, 8411−8429. <https://doi.org/10.1175/JCLI-D-15-0171.1>
19. CLARKE, L.C., RENARD, R.J. (1966): The U.S. Navy numerical frontal analysis scheme: Further development and a limited evaluation. Journal of Applied Meteorology and Climatology, 5, 6, 764−777. <https://doi.org/10.1175/1520-0450(1966)0052.0.CO;2>
20. DACRE, H.F., CLARK, P.A., MARTINEZ-ALVARADO, O., STRINGER, M.A., LAVERS, D.A. (2015): How do atmospheric rivers form? Bulletin of the American Meteorological Society, 96, 8, 1243−1255. <https://doi.org/10.1175/BAMS-D-14-00031.1>
21. DACRE, H.F., MARTINEZ-ALVARADO, O., MBENGUE, C.O. (2019): Linking atmospheric rivers and warm conveyor belt airflows. Journal of Hydrometeorology, 20, 6, 1183−1196. <https://doi.org/10.1175/JHM-D-18-0175.1>
22. DE LA TORRE, L., NIETO, R., NOGUEROL, M., AÑEL, J.A., GIMENO, L. (2008): A climatology based on reanalysis of baroclinic developmental regions in the extratropical Northern Hemisphere. Annals of the New York Academy of Sciences, 1146, 1, 235−255. <https://doi.org/10.1196/annals.1446.017>
23. DETTINGER, M.D., CAYAN, D.R. (2014): Drought and the California delta – A matter of extremes. San Francisco Estuary and Watershed Science, 12, 2, 1−12. <https://doi.org/10.15447/sfews.2014v12iss2art4>
24. FLOCAS, A.A. (1984): The annual and seasonal distribution of fronts over central-southern Europe and the Mediterranean. Journal of Climatology, 4, 3, 255−267. <https://doi.org/10.1002/joc.3370040304>
25. GODSON, W.L. (1951): Synoptic properties of frontal surfaces. Quarterly Journal of the Royal Meteorological Society, 77, 334, 633−653. <https://doi.org/10.1002/qj.49707733407>
26. HARROLD, T.W. (1972): The structure and mechanism of widespread precipitation. PhD Thesis, University of London.
27. HARROLD, T.W. (1973): Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quarterly Journal of the Royal Meteorological Society, 99, 420, 232−251. <https://doi.org/10.1002/qj.49709942003>
28. HAURWITZ, B., AUSTIN, J.M. (1944): Climatology. McGraw-Hill, N.Y.
29. HÉNIN, R., RAMOS, A.M., SCHEMM, S., GOUVEIA, C.M., LIBERATO, M.L. (2019): Assigning precipitation to mid‐latitudes fronts on sub‐daily scales in the North Atlantic and European sector: climatology and trends. International Journal of Climatology, 39, 1, 317−330. <https://doi.org/10.1002/joc.5808>
30. HEWSON, T.D. (1998): Objective fronts. Meteorological Applications, 5, 1, 37−65. <https://doi.org/10.1017/S1350482798000553>
31. HOSKINS, B.J., MCINTYRE, M.E., ROBERTSON, A.W. (1985): On the use and significance of isentropic potential vorticity maps. Quarterly Journal of the Royal Meteorological Society, 111, 470, 877−946. <https://doi.org/10.1002/qj.49711147002>
32. HUTH, R., ŠTEKL, J. (1988): Objektivizace analýzy atmosférických front. Meteorol. zpr., 41, 70−74. <https://doi.org/10.1515/ijsl.1988.74.41>
33. HUTH, R., KYSELÝ, J., DUBROVSKÝ, M. (2001): Time structure of observed, GCM- simulated, downscaled, and stochastically generated daily temperature series. J. Climate, 14, 4047−4061. <https://doi.org/10.1175/1520-0442(2001)0142.0.CO;2>
34. JENKNER, J., SPRENGER, M., SCHWENK, I., SCHWIERZ, C., DIERER, S., LEUENBERGER, D. (2010): Detection and climatology of fronts in a high‐resolution model reanalysis over the Alps. Meteorological Applications: A journal of forecasting, practical applications, training techniques and modelling, 17, 1, 1−18. <https://doi.org/10.1002/met.142>
35. KAŠPAR, M. (2003): Objective frontal analysis techniques applied to extreme/non-extreme precipitation events. Studia Geophysica et Geodaetica, 47, 3, 605−631. <https://doi.org/10.1023/A:1024767719414>
36. KHRGIAN, A.K. (1970): Meteorology: A Historical Survey, Israel Program for Scientific Translations, Jerusalem.
37. KNIPPERTZ, P., WERNLI, H., BINDER, H., BÖTTCHER, M., JOOS, H., MADONNA, E., PANTE, G., SPRENGER, M. (2018): The relationship between warm conveyor belts, tropical moisture exports and atmospheric rivers. EGU General Assembly Conference Abstracts.
38. KONRAD, C.P., DETTINGER, M.D. (2017): Flood runoff in relation to water vapor transport by atmospheric rivers over the western United States, 1949−2015. Geophysical Research Letters, 44, 22, 11456–11462. <https://doi.org/10.1002/2017GL075399>
39. KOPÁČEK, J., BEDNÁŘ, J., ŽÁK, M. (2020): Jak vzniká počasí. Charles University in Prague, Karolinum Press.
40. KUO, Y.-H., REED, R.J., LOW-NAM, S. (1992): Thermal structure and airflow in a model simulation of an occluded marine cyclone. Monthly Weather Review, 120, 10, 2280−2297. <https://doi.org/10.1175/1520-0493(1992)1202.0.CO;2>
41. LAGERQUIST, R., MCGOVERN, A., GAGNE II, D.J. (2019): Deep learning for spatially explicit prediction of synoptic-scale fronts. Weather and Forecasting, 34, 4, 1137−1160. <https://doi.org/10.1175/WAF-D-18-0183.1>
42. LAGERQUIST, R., ALLEN, J.T., MCGOVERN, A. (2020): Climatology and variability of warm and cold fronts over North America from 1979 to 2018. Journal of Climate, 33, 15, 6531−6554. <https://doi.org/10.1175/JCLI-D-19-0680.1>
43. MARKET, P.S., MOORE, J.T. (1998): Mesoscale evolution of a continental occluded cyclone. Monthly Weather Review, 126, 7, 1793−1811. <https://doi.org/10.1175/1520-0493(1998)1262.0.CO;2>
44. MARTIN, J.E. (1999A): Quasigeostrophic forcing of ascent in the occluded sector of cyclones and the trowal airstream. Monthly Weather Review, 127, 1, 70−88. <https://doi.org/10.1175/1520-0493(1999)1272.0.CO;2>
45. MARTIN, J.E. (1999B): The separate roles of geostrophic vorticity and deformation in the midlatitude occlusion process. Monthly Weather Review, 127, 10, 2404−2418. <https://doi.org/10.1175/1520-0493(1999)1272.0.CO;2>
46. MASS, C.F. (1991): Synoptic frontal analysis: Time for a reassessment? Bulletin of the American Meteorological Society, 72, 3, 348–363. <https://doi.org/10.1175/1520-0477(1991)0722.0.CO;2>
47. MORGAN, G.M., BRUNKOW, D.G., BEEBE, R.C. (1975): Climatology of surface fronts. Illinois State Water Survey Circular.
48. NEIMAN, P.J., SCHICK, L.J., RALPH, F.M., HUGHES, M., WICK, G.A. (2011): Flooding in western Washington: The connection to atmospheric rivers. Journal of Hydrometeorology, 12, 6, 1337−1358. <https://doi.org/10.1175/2011JHM1358.1>
49. NEWELL, R.E., NEWELL, N.E., ZHU, Y., SCOTT, C. (1992): Tropospheric rivers? – A pilot study. Geophysical Research Letters, 19, 24, 2401−2404. <https://doi.org/10.1029/92GL02916>
50. NEWELL, R.E., ZHU, Y. (1994): Tropospheric rivers: a one-year record and a possible application to ice core data, Geophysical Research Letters, 21, 113−116. <https://doi.org/10.1029/93GL03113>
51. PALMÉN, E. (1951): The Aerology of Extratropical Disturbances. In: Malone, T.F. (ed.): Compendium of Meteorology. American Meteorological Society, Boston, 599−620. <https://doi.org/10.1007/978-1-940033-70-9_49>
52. PARFITT, R., CZAJA, A., SEO, H. (2017): A simple diagnostic for the detection of atmospheric fronts. Geophysical Research Letters, 44, 9, 4351−4358. <https://doi.org/10.1002/2017GL073662>
53. PFAHL, S., MADONNA, E., BOETTCHER, M., JOOS, H., WERNLI, H. (2014): Warm conveyor belts in the ERA-Interim data set (1979−2010). Part II: Moisture origin and relevance for precipitation. Journal of Climate, 27, 1, 27–40. <https://doi.org/10.1175/JCLI-D-13-00223.1>
54. PISKALA, V., HUTH, R. (2020): Asymmetry of day-to-day temperature changes and its causes. Theoretical and Applied Climatology, 140, 1, 683−690. <https://doi.org/10.1007/s00704-020-03116-4>
55. POSSELT, D.J., MARTIN, J.E. (2004): The effect of latent heat release on the evolution of a warm occluded thermal structure. Monthly Weather Review, 132, 2, 578−599. <https://doi.org/10.1175/1520-0493(2004)1322.0.CO;2>
56. QUAN, H., CHAI, W., FU, Z. (2022): Asymmetry of daily mean temperature series over China and its frontal mechanism. International Journal of Climatology, 42, 3, 1828−1840. <https://doi.org/10.1002/joc.7338>
57. RALPH, F.M., NEIMAN, P.J., WICK, G.A. (2004): Satellite and CALJET aircraft observations of at- mospheric rivers over the eastern North-Pacific Ocean during the winter of 1997/98. Monthly Weather Review, 132, 7, 1721−1745. <https://doi.org/10.1175/1520-0493(2004)1322.0.CO;2>
58. RALPH, F.M. NEIMAN, P.J., ROTUNNO, R. (2005): Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical- profile and atmospheric-river characteristics. Monthly Weather Review, 133, 4, 889−910. <https://doi.org/10.1175/MWR2896.1>
59. RALPH, F.M., NEIMAN, P.J., WICK, G.A., GUTMAN, S.I., DETTINGER, M.D., CAYAN, D.R., WHITE, A.B. (2006): Flooding on California’s Russian River: Role of atmospheric rivers. Geophysical Research Letters, 33, 13, 1−5. <https://doi.org/10.1029/2006GL026689>
60. RALPH, F.M., DETTINGER, M.D. (2012): Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bulletin of the American Meteorological Society, 93, 6, 783−790. <https://doi.org/10.1175/BAMS-D-11-00188.1>
61. RALPH, F.M., RUTZ, J.J., CORDEIRA, J.M., DETTINGER, M., ANDERSON, M., REYNOLDS, D., SCHICK, L.J., SMALLCOMB, C. (2019): A Scale to Characterize the Strength and Impacts of Atmospheric Rivers. Bulletin of the American Meteorological Society, 100, 2, 269−289. <https://doi.org/10.1175/BAMS-D-18-0023.1>
62. REED, R.J., KUNKEL, B.A. (1960): The Arctic circulation in summer. Journal of the Atmospheric Sciences, 17, 5, 489−506. <https://doi.org/10.1175/1520-0469(1960)0172.0.CO;2>
63. REID, K. (2020): What’s in a name? Climate Extremes, https://climateextremes.org.au/whats-in-a-name/.
64. RENARD, R.J., CLARKE, L.C. (1965): Experiments in numerical objective frontal analysis. Monthly Weather Review, 93, 9, 547−556. <https://doi.org/10.1175/1520-0493(1965)0932.3.CO;2>
65. RUDEVA, I., SIMMONDS, I. (2015): Variability and trends of global atmospheric frontal ac- tivity and links with large-scale modes of variability. Journal of Climate, 28, 8, 3311−3330. <https://doi.org/10.1175/JCLI-D-14-00458.1>
66. SERREZE, M.C., LYNCH, A.H., CLARK, M.P. (2001): The Arctic frontal zone as seen in the NCEP–NCAR reanalysis. Journal of Climate, 14, 7, 1550−1567. <https://doi.org/10.1175/1520-0442(2001)0142.0.CO;2>
67. SCHEMM, S., RUDEVA, I., SIMMONDS, I. (2014): Extratropical fronts in the lower tropo- sphere–global perspectives obtained from two automated methods. Quarterly Journal of the Royal Meteorological Society, 141, 690, 1686−1698. <https://doi.org/10.1002/qj.2471>
68. SCHULTZ, D.M., MASS, C.F. (1993): The occlusion process in a midlatitude cyclone over land. Monthly Weather Review, 121, 4, 918−940. <https://doi.org/10.1175/1520-0493(1993)1212.0.CO;2>
69. SCHULTZ, D.M., KEYSER, D., BOSART, L.F. (1998): The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones. Monthly Weather Review, 126, 7, 1767−1791. <https://doi.org/10.1175/1520-0493(1998)1262.0.CO;2>
70. SCHULTZ, D.M., VAUGHAN, G. (2011): Occluded Fronts and the Occlusion Process: A Fresh Look at Conventional Wisdom. Bulletin of the American Meteorological Society, 92, 4, 443−466. <https://doi.org/10.1175/2010BAMS3057.1>
71. SCHUMANN, T.E.W., VAN ROOY, M.P. (1951): Frequency of fronts in the Northern Hemisphere. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A, 4, 1, 87−97. <https://doi.org/10.1007/BF02246795>
72. SHAPIRO, M.A., KEYSER, D. (1990): Fronts, jet streams and the tropopause. In: Newton, C.W., Holopainen, E.O. (eds.): Extratropical Cyclones: The Erik Palmén Memorial Volume, American Meteorological Society, 167−191. <https://doi.org/10.1007/978-1-944970-33-8_10>
73. SIMMONDS, I., KEAY, K., BYE, J.A.T. (2012): Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis, Journal of Climate, 25, 6, 1945−1962. <https://doi.org/10.1175/JCLI-D-11-00100.1>
74. SODEMANN, H., STOHL, A. (2013): Moisture origin and meridional transport in atmos- pheric rivers and their association with multiple cyclones. Monthly Weather Review, 141, 8, 2850−2868. <https://doi.org/10.1175/MWR-D-12-00256.1>
75. SOLMAN, S.A., ORLANSKI, I. (2010): Subpolar high anomaly preconditioning precipitation over South America. Journal of the Atmospheric Sciences, 67, 5, 1526−1542. <https://doi.org/10.1175/2009JAS3309.1>
76. SOLMAN, S.A., ORLANSKI, I. (2014): Poleward shift and change of frontal activity in the Southern Hemisphere over the last 40 years. Journal of the Atmospheric Sciences, 71, 2, 539−552. <https://doi.org/10.1175/JAS-D-13-0105.1>
77. SOLMAN, S.A., ORLANSKI, I. (2016): Climate change over the extratropical Southern Hemisphere: The tale from an ensemble of reanalysis datasets. Journal of Climate, 29, 5, 1673−1687. <https://doi.org/10.1175/JCLI-D-15-0588.1>
78. STARR, V.P. (1942): Basic Principles of Weather Forecasting. Harper and Bros. Publ., N.Y.
79. STOELINGA, M.T., LOCATELLI, J.D., HOBBS, P.V. (2002): Warm occlusions, cold occlusions, and forward-tilting cold fronts. Bulletin of the American Meteorological Society, 83, 5, 709−721. <https://doi.org/10.1175/1520-0477(2002)0832.3.CO;2>
80. TALJAARD, J.J., SCHMITT, W., VAN LOON, H. (1961): Frontal analysis with application to the Southern Hemisphere. Notos, 10, 25−58.
81. TIAN, P., LU, H., XUE, Y. (2019): Characterization of temperature difference between the neighbouring days in China and its potential driving factors. International Journal of Climatology, 39, 12, 4659−4668. <https://doi.org/10.1002/joc.6093>
82. THOMAS, C.M., SCHULTZ, D.M. (2019a). Global Climatologies of Fronts, Airmass Boundaries, and Airstream Boundaries: Why the Definition of “Front” Matters. Monthly Weather Review, 147, 2, 691−717. <https://doi.org/10.1175/MWR-D-18-0289.1>
83. THOMAS, C.M., SCHULTZ, D.M. (2019b). What are the best thermodynamic quantity and function to define a front in gridded model output? Bulletin of the American Meteorological Society, 100, 5, 873−895. <https://doi.org/10.1175/BAMS-D-18-0137.1>
84. UCCELLINI, L.W., KEYSER, D., BRILL, K.F., WASH, C.H. (1985): The Presidents’ Day cyclone of 18−19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Monthly Weather Review, 113, 6, 962–988. <https://doi.org/10.1175/1520-0493(1985)1132.0.CO;2>
85. WALLACE, J.M., HOBBS, P.V. (1977): Atmospheric Science; An Introductory Survey. Academic Press.
86. ZHANG, W., VILLARINI, G., SCOCCIMARRO, E. (2019): Reduced extremes of sub‐daily temperature swings during the boreal summer in the Northern Hemisphere. International Journal of Climatology, 40, 2, 1306−1315. <https://doi.org/10.1002/joc.6222>
87. ZHU, Y., NEWELL, R.E. (1994): Atmospheric rivers and bombs. Geophysical Research Letters. 21, 18, 1999−2002. <https://doi.org/10.1029/94GL01710>
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive