Geografie 2024, 129, 119-143
https://doi.org/10.37040/geografie.2024.009
Atmospheric fronts from a climatologist's perspective: A review
References
1. ANDERSON, R., BOVILLE, B.W., MCCLELLAN, D.E. (1955): An operational frontal contour analysis model. Quarterly Journal of the Royal Meteorological Society, 81, 350, 588−599.
<https://doi.org/10.1002/qj.49708135008>
2. ANDERSON, R., BOVILLE, B.W., MCCLELLAN, D.E. (1956): Discussion on “An operational frontal contour-analysis model”. Quarterly Journal of the Royal Meteorological Society, 82, 352, 244−246.
<https://doi.org/10.1002/qj.49708235213>
3. BERRY, G., REEDER, M.J., JAKOB, C. (2011): A global climatology of atmospheric fronts. Geophysical Research Letters, 38, 4, 1−5.
<https://doi.org/10.1029/2010GL046451>
4. BERRY, G., JAKOB, C., REEDER, M. (2011): Recent global trends in atmospheric fronts. Geophysical Research Letters, 38, 21, 1−6.
<https://doi.org/10.1029/2011GL049481>
5. BIARD, J.C., KUNKEL, K.E. (2019): Automated detection of weather fronts using a deep learning neural network, Advances in Statistical Climatology, Meteorology and Oceanography, 5, 2, 147−160.
<https://doi.org/10.5194/ascmo-5-147-2019>
6. 1922): Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofysiske Publikasjoner, 1, 3, 1−18.
, J., SOLBERG, H. (
7. BLÁZQUEZ, J., SOLMAN, S.A. (2016): Intraseasonal variability of wintertime frontal activity and its relationship with precipitation anomalies in the vicinity of South America. Climate Dynamics, 46, 7, 2327−2336.
<https://doi.org/10.1007/s00382-015-2704-0>
8. BLÁZQUEZ, J., SOLMAN, S.A. (2017): Interannual variability of the frontal activity in the Southern Hemisphere: relationship with atmospheric circulation and precipitation over southern South America. Climate Dynamics, 48, 7, 2569−2579.
<https://doi.org/10.1007/s00382-016-3223-3>
9. BLÁZQUEZ, J., SOLMAN, S.A. (2018): Fronts and precipitation in CMIP5 models for the austral winter of the Southern Hemisphere. Climate Dynamics, 50, 7, 2705−2717.
<https://doi.org/10.1007/s00382-017-3765-z>
10. BLÁZQUEZ, J., SOLMAN, S.A. (2019): Relationship between projected changes in precipitation and fronts in the austral winter of the Southern Hemisphere from a suite of CMIP5 models. Climate Dynamics, 52, 9, 5849−5860.
<https://doi.org/10.1007/s00382-018-4482-y>
11. BROWNING, K.A. (1986): Conceptual models of precipitation systems. Weather and forecasting, 1, 1, 23−41.
<https://doi.org/10.1175/1520-0434(1986)0012.0.CO;2>
12. BROWNING, K.A. (1990): Organization of clouds and precipitation in extratropical cyclones. In: Newton, C.W., Holopainen, E.O. (eds.): Extratropical Cyclones: The Erik Palmén Memorial Volume, American Meteorological Society, 129−154.
<https://doi.org/10.1007/978-1-944970-33-8_8>
13. CARLSON, T.N. (1980): Airflow Through Midlatitude Cyclones and the Comma Cloud Pattern. Monthly Weather Review, 108, 10, 1498−1509.
<https://doi.org/10.1175/1520-0493(1980)1082.0.CO;2>
14. CATTO, J.L., JAKOB, C., BERRY, G., NICHOLLS, N. (2012): Relating global precipitation to atmospheric fronts. Geophysical Research Letters, 39, 10, 1−6.
<https://doi.org/10.1029/2012GL051736>
15. CATTO, J.L., JAKOB, C., NICHOLLS, N. (2013): A global evaluation of fronts and precipitation in the ACCESS model. Australian Meteorological and Oceanographic Journal, 63, 191−203.
<https://doi.org/10.22499/2.6301.012>
16. CATTO, J.L., PFAHL, S. (2013): The importance of fronts for extreme precipitation. Journal of Geophysical Research: Atmospheres, 118, 19, 10791−10801.
<https://doi.org/10.1002/jgrd.50852>
17. CATTO, J.L., NICHOLLS, N., JAKOB, C., SHELTON, K.L. (2014): Atmospheric fronts in current and future climates. Geophysical Research Letters, 41, 21, 7642−7650.
<https://doi.org/10.1002/2014GL061943>
18. CATTO, J.L., MADONNA, E., JOOS, H., RUDEVA, I., SIMMONDS, I. (2015): Global relationship between fronts and warm conveyor belts and the impact on extreme precipitation. Journal of Climate, 28, 21, 8411−8429.
<https://doi.org/10.1175/JCLI-D-15-0171.1>
19. CLARKE, L.C., RENARD, R.J. (1966): The U.S. Navy numerical frontal analysis scheme: Further development and a limited evaluation. Journal of Applied Meteorology and Climatology, 5, 6, 764−777.
<https://doi.org/10.1175/1520-0450(1966)0052.0.CO;2>
20. DACRE, H.F., CLARK, P.A., MARTINEZ-ALVARADO, O., STRINGER, M.A., LAVERS, D.A. (2015): How do atmospheric rivers form? Bulletin of the American Meteorological Society, 96, 8, 1243−1255.
<https://doi.org/10.1175/BAMS-D-14-00031.1>
21. DACRE, H.F., MARTINEZ-ALVARADO, O., MBENGUE, C.O. (2019): Linking atmospheric rivers and warm conveyor belt airflows. Journal of Hydrometeorology, 20, 6, 1183−1196.
<https://doi.org/10.1175/JHM-D-18-0175.1>
22. DE LA TORRE, L., NIETO, R., NOGUEROL, M., AÑEL, J.A., GIMENO, L. (2008): A climatology based on reanalysis of baroclinic developmental regions in the extratropical Northern Hemisphere. Annals of the New York Academy of Sciences, 1146, 1, 235−255.
<https://doi.org/10.1196/annals.1446.017>
23. DETTINGER, M.D., CAYAN, D.R. (2014): Drought and the California delta – A matter of extremes. San Francisco Estuary and Watershed Science, 12, 2, 1−12.
<https://doi.org/10.15447/sfews.2014v12iss2art4>
24. FLOCAS, A.A. (1984): The annual and seasonal distribution of fronts over central-southern Europe and the Mediterranean. Journal of Climatology, 4, 3, 255−267.
<https://doi.org/10.1002/joc.3370040304>
25. GODSON, W.L. (1951): Synoptic properties of frontal surfaces. Quarterly Journal of the Royal Meteorological Society, 77, 334, 633−653.
<https://doi.org/10.1002/qj.49707733407>
26. HARROLD, T.W. (1972): The structure and mechanism of widespread precipitation. PhD Thesis, University of London.
27. HARROLD, T.W. (1973): Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quarterly Journal of the Royal Meteorological Society, 99, 420, 232−251.
<https://doi.org/10.1002/qj.49709942003>
28. HAURWITZ, B., AUSTIN, J.M. (1944): Climatology. McGraw-Hill, N.Y.
29. HÉNIN, R., RAMOS, A.M., SCHEMM, S., GOUVEIA, C.M., LIBERATO, M.L. (2019): Assigning precipitation to mid‐latitudes fronts on sub‐daily scales in the North Atlantic and European sector: climatology and trends. International Journal of Climatology, 39, 1, 317−330.
<https://doi.org/10.1002/joc.5808>
30. HEWSON, T.D. (1998): Objective fronts. Meteorological Applications, 5, 1, 37−65.
<https://doi.org/10.1017/S1350482798000553>
31. HOSKINS, B.J., MCINTYRE, M.E., ROBERTSON, A.W. (1985): On the use and significance of isentropic potential vorticity maps. Quarterly Journal of the Royal Meteorological Society, 111, 470, 877−946.
<https://doi.org/10.1002/qj.49711147002>
32. HUTH, R., ŠTEKL, J. (1988): Objektivizace analýzy atmosférických front. Meteorol. zpr., 41, 70−74.
<https://doi.org/10.1515/ijsl.1988.74.41>
33. HUTH, R., KYSELÝ, J., DUBROVSKÝ, M. (2001): Time structure of observed, GCM- simulated, downscaled, and stochastically generated daily temperature series. J. Climate, 14, 4047−4061.
<https://doi.org/10.1175/1520-0442(2001)0142.0.CO;2>
34. JENKNER, J., SPRENGER, M., SCHWENK, I., SCHWIERZ, C., DIERER, S., LEUENBERGER, D. (2010): Detection and climatology of fronts in a high‐resolution model reanalysis over the Alps. Meteorological Applications: A journal of forecasting, practical applications, training techniques and modelling, 17, 1, 1−18.
<https://doi.org/10.1002/met.142>
35. KAŠPAR, M. (2003): Objective frontal analysis techniques applied to extreme/non-extreme precipitation events. Studia Geophysica et Geodaetica, 47, 3, 605−631.
<https://doi.org/10.1023/A:1024767719414>
36. KHRGIAN, A.K. (1970): Meteorology: A Historical Survey, Israel Program for Scientific Translations, Jerusalem.
37. KNIPPERTZ, P., WERNLI, H., BINDER, H., BÖTTCHER, M., JOOS, H., MADONNA, E., PANTE, G., SPRENGER, M. (2018): The relationship between warm conveyor belts, tropical moisture exports and atmospheric rivers. EGU General Assembly Conference Abstracts.
38. KONRAD, C.P., DETTINGER, M.D. (2017): Flood runoff in relation to water vapor transport by atmospheric rivers over the western United States, 1949−2015. Geophysical Research Letters, 44, 22, 11456–11462.
<https://doi.org/10.1002/2017GL075399>
39. KOPÁČEK, J., BEDNÁŘ, J., ŽÁK, M. (2020): Jak vzniká počasí. Charles University in Prague, Karolinum Press.
40. KUO, Y.-H., REED, R.J., LOW-NAM, S. (1992): Thermal structure and airflow in a model simulation of an occluded marine cyclone. Monthly Weather Review, 120, 10, 2280−2297.
<https://doi.org/10.1175/1520-0493(1992)1202.0.CO;2>
41. LAGERQUIST, R., MCGOVERN, A., GAGNE II, D.J. (2019): Deep learning for spatially explicit prediction of synoptic-scale fronts. Weather and Forecasting, 34, 4, 1137−1160.
<https://doi.org/10.1175/WAF-D-18-0183.1>
42. LAGERQUIST, R., ALLEN, J.T., MCGOVERN, A. (2020): Climatology and variability of warm and cold fronts over North America from 1979 to 2018. Journal of Climate, 33, 15, 6531−6554.
<https://doi.org/10.1175/JCLI-D-19-0680.1>
43. MARKET, P.S., MOORE, J.T. (1998): Mesoscale evolution of a continental occluded cyclone. Monthly Weather Review, 126, 7, 1793−1811.
<https://doi.org/10.1175/1520-0493(1998)1262.0.CO;2>
44. MARTIN, J.E. (1999A): Quasigeostrophic forcing of ascent in the occluded sector of cyclones and the trowal airstream. Monthly Weather Review, 127, 1, 70−88.
<https://doi.org/10.1175/1520-0493(1999)1272.0.CO;2>
45. MARTIN, J.E. (1999B): The separate roles of geostrophic vorticity and deformation in the midlatitude occlusion process. Monthly Weather Review, 127, 10, 2404−2418.
<https://doi.org/10.1175/1520-0493(1999)1272.0.CO;2>
46. MASS, C.F. (1991): Synoptic frontal analysis: Time for a reassessment? Bulletin of the American Meteorological Society, 72, 3, 348–363.
<https://doi.org/10.1175/1520-0477(1991)0722.0.CO;2>
47. MORGAN, G.M., BRUNKOW, D.G., BEEBE, R.C. (1975): Climatology of surface fronts. Illinois State Water Survey Circular.
48. NEIMAN, P.J., SCHICK, L.J., RALPH, F.M., HUGHES, M., WICK, G.A. (2011): Flooding in western Washington: The connection to atmospheric rivers. Journal of Hydrometeorology, 12, 6, 1337−1358.
<https://doi.org/10.1175/2011JHM1358.1>
49. NEWELL, R.E., NEWELL, N.E., ZHU, Y., SCOTT, C. (1992): Tropospheric rivers? – A pilot study. Geophysical Research Letters, 19, 24, 2401−2404.
<https://doi.org/10.1029/92GL02916>
50. NEWELL, R.E., ZHU, Y. (1994): Tropospheric rivers: a one-year record and a possible application to ice core data, Geophysical Research Letters, 21, 113−116.
<https://doi.org/10.1029/93GL03113>
51. PALMÉN, E. (1951): The Aerology of Extratropical Disturbances. In: Malone, T.F. (ed.): Compendium of Meteorology. American Meteorological Society, Boston, 599−620.
<https://doi.org/10.1007/978-1-940033-70-9_49>
52. PARFITT, R., CZAJA, A., SEO, H. (2017): A simple diagnostic for the detection of atmospheric fronts. Geophysical Research Letters, 44, 9, 4351−4358.
<https://doi.org/10.1002/2017GL073662>
53. PFAHL, S., MADONNA, E., BOETTCHER, M., JOOS, H., WERNLI, H. (2014): Warm conveyor belts in the ERA-Interim data set (1979−2010). Part II: Moisture origin and relevance for precipitation. Journal of Climate, 27, 1, 27–40.
<https://doi.org/10.1175/JCLI-D-13-00223.1>
54. PISKALA, V., HUTH, R. (2020): Asymmetry of day-to-day temperature changes and its causes. Theoretical and Applied Climatology, 140, 1, 683−690.
<https://doi.org/10.1007/s00704-020-03116-4>
55. POSSELT, D.J., MARTIN, J.E. (2004): The effect of latent heat release on the evolution of a warm occluded thermal structure. Monthly Weather Review, 132, 2, 578−599.
<https://doi.org/10.1175/1520-0493(2004)1322.0.CO;2>
56. QUAN, H., CHAI, W., FU, Z. (2022): Asymmetry of daily mean temperature series over China and its frontal mechanism. International Journal of Climatology, 42, 3, 1828−1840.
<https://doi.org/10.1002/joc.7338>
57. RALPH, F.M., NEIMAN, P.J., WICK, G.A. (2004): Satellite and CALJET aircraft observations of at- mospheric rivers over the eastern North-Pacific Ocean during the winter of 1997/98. Monthly Weather Review, 132, 7, 1721−1745.
<https://doi.org/10.1175/1520-0493(2004)1322.0.CO;2>
58. RALPH, F.M. NEIMAN, P.J., ROTUNNO, R. (2005): Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical- profile and atmospheric-river characteristics. Monthly Weather Review, 133, 4, 889−910.
<https://doi.org/10.1175/MWR2896.1>
59. RALPH, F.M., NEIMAN, P.J., WICK, G.A., GUTMAN, S.I., DETTINGER, M.D., CAYAN, D.R., WHITE, A.B. (2006): Flooding on California’s Russian River: Role of atmospheric rivers. Geophysical Research Letters, 33, 13, 1−5.
<https://doi.org/10.1029/2006GL026689>
60. RALPH, F.M., DETTINGER, M.D. (2012): Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bulletin of the American Meteorological Society, 93, 6, 783−790.
<https://doi.org/10.1175/BAMS-D-11-00188.1>
61. RALPH, F.M., RUTZ, J.J., CORDEIRA, J.M., DETTINGER, M., ANDERSON, M., REYNOLDS, D., SCHICK, L.J., SMALLCOMB, C. (2019): A Scale to Characterize the Strength and Impacts of Atmospheric Rivers. Bulletin of the American Meteorological Society, 100, 2, 269−289.
<https://doi.org/10.1175/BAMS-D-18-0023.1>
62. REED, R.J., KUNKEL, B.A. (1960): The Arctic circulation in summer. Journal of the Atmospheric Sciences, 17, 5, 489−506.
<https://doi.org/10.1175/1520-0469(1960)0172.0.CO;2>
63. REID, K. (2020): What’s in a name? Climate Extremes, https://climateextremes.org.au/whats-in-a-name/.
64. RENARD, R.J., CLARKE, L.C. (1965): Experiments in numerical objective frontal analysis. Monthly Weather Review, 93, 9, 547−556.
<https://doi.org/10.1175/1520-0493(1965)0932.3.CO;2>
65. RUDEVA, I., SIMMONDS, I. (2015): Variability and trends of global atmospheric frontal ac- tivity and links with large-scale modes of variability. Journal of Climate, 28, 8, 3311−3330.
<https://doi.org/10.1175/JCLI-D-14-00458.1>
66. SERREZE, M.C., LYNCH, A.H., CLARK, M.P. (2001): The Arctic frontal zone as seen in the NCEP–NCAR reanalysis. Journal of Climate, 14, 7, 1550−1567.
<https://doi.org/10.1175/1520-0442(2001)0142.0.CO;2>
67. SCHEMM, S., RUDEVA, I., SIMMONDS, I. (2014): Extratropical fronts in the lower tropo- sphere–global perspectives obtained from two automated methods. Quarterly Journal of the Royal Meteorological Society, 141, 690, 1686−1698.
<https://doi.org/10.1002/qj.2471>
68. SCHULTZ, D.M., MASS, C.F. (1993): The occlusion process in a midlatitude cyclone over land. Monthly Weather Review, 121, 4, 918−940.
<https://doi.org/10.1175/1520-0493(1993)1212.0.CO;2>
69. SCHULTZ, D.M., KEYSER, D., BOSART, L.F. (1998): The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones. Monthly Weather Review, 126, 7, 1767−1791.
<https://doi.org/10.1175/1520-0493(1998)1262.0.CO;2>
70. SCHULTZ, D.M., VAUGHAN, G. (2011): Occluded Fronts and the Occlusion Process: A Fresh Look at Conventional Wisdom. Bulletin of the American Meteorological Society, 92, 4, 443−466.
<https://doi.org/10.1175/2010BAMS3057.1>
71. SCHUMANN, T.E.W., VAN ROOY, M.P. (1951): Frequency of fronts in the Northern Hemisphere. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A, 4, 1, 87−97.
<https://doi.org/10.1007/BF02246795>
72. SHAPIRO, M.A., KEYSER, D. (1990): Fronts, jet streams and the tropopause. In: Newton, C.W., Holopainen, E.O. (eds.): Extratropical Cyclones: The Erik Palmén Memorial Volume, American Meteorological Society, 167−191.
<https://doi.org/10.1007/978-1-944970-33-8_10>
73. SIMMONDS, I., KEAY, K., BYE, J.A.T. (2012): Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis, Journal of Climate, 25, 6, 1945−1962.
<https://doi.org/10.1175/JCLI-D-11-00100.1>
74. SODEMANN, H., STOHL, A. (2013): Moisture origin and meridional transport in atmos- pheric rivers and their association with multiple cyclones. Monthly Weather Review, 141, 8, 2850−2868.
<https://doi.org/10.1175/MWR-D-12-00256.1>
75. SOLMAN, S.A., ORLANSKI, I. (2010): Subpolar high anomaly preconditioning precipitation over South America. Journal of the Atmospheric Sciences, 67, 5, 1526−1542.
<https://doi.org/10.1175/2009JAS3309.1>
76. SOLMAN, S.A., ORLANSKI, I. (2014): Poleward shift and change of frontal activity in the Southern Hemisphere over the last 40 years. Journal of the Atmospheric Sciences, 71, 2, 539−552.
<https://doi.org/10.1175/JAS-D-13-0105.1>
77. SOLMAN, S.A., ORLANSKI, I. (2016): Climate change over the extratropical Southern Hemisphere: The tale from an ensemble of reanalysis datasets. Journal of Climate, 29, 5, 1673−1687.
<https://doi.org/10.1175/JCLI-D-15-0588.1>
78. STARR, V.P. (1942): Basic Principles of Weather Forecasting. Harper and Bros. Publ., N.Y.
79. STOELINGA, M.T., LOCATELLI, J.D., HOBBS, P.V. (2002): Warm occlusions, cold occlusions, and forward-tilting cold fronts. Bulletin of the American Meteorological Society, 83, 5, 709−721.
<https://doi.org/10.1175/1520-0477(2002)0832.3.CO;2>
80. 1961): Frontal analysis with application to the Southern Hemisphere. Notos, 10, 25−58.
, J.J., SCHMITT, W., VAN LOON, H. (
81. TIAN, P., LU, H., XUE, Y. (2019): Characterization of temperature difference between the neighbouring days in China and its potential driving factors. International Journal of Climatology, 39, 12, 4659−4668.
<https://doi.org/10.1002/joc.6093>
82. THOMAS, C.M., SCHULTZ, D.M. (2019a). Global Climatologies of Fronts, Airmass Boundaries, and Airstream Boundaries: Why the Definition of “Front” Matters. Monthly Weather Review, 147, 2, 691−717.
<https://doi.org/10.1175/MWR-D-18-0289.1>
83. THOMAS, C.M., SCHULTZ, D.M. (2019b). What are the best thermodynamic quantity and function to define a front in gridded model output? Bulletin of the American Meteorological Society, 100, 5, 873−895.
<https://doi.org/10.1175/BAMS-D-18-0137.1>
84. UCCELLINI, L.W., KEYSER, D., BRILL, K.F., WASH, C.H. (1985): The Presidents’ Day cyclone of 18−19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Monthly Weather Review, 113, 6, 962–988.
<https://doi.org/10.1175/1520-0493(1985)1132.0.CO;2>
85. WALLACE, J.M., HOBBS, P.V. (1977): Atmospheric Science; An Introductory Survey. Academic Press.
86. ZHANG, W., VILLARINI, G., SCOCCIMARRO, E. (2019): Reduced extremes of sub‐daily temperature swings during the boreal summer in the Northern Hemisphere. International Journal of Climatology, 40, 2, 1306−1315.
<https://doi.org/10.1002/joc.6222>
87. ZHU, Y., NEWELL, R.E. (1994): Atmospheric rivers and bombs. Geophysical Research Letters. 21, 18, 1999−2002.
<https://doi.org/10.1029/94GL01710>