Geografie 2024, 129, 1-13
https://doi.org/10.37040/geografie.2024.005
The relationship between foot traffic and commercial land prices
References
1. ABDELNASSER, H., YOUSSEF, M., HARRAS, K.A. (2015): Wigest: A ubiquitous wifi-based gesture recognition system. In 2015 IEEE conference on computer communications (INFOCOM), IEEE, 1472–1480.
<https://doi.org/10.1109/INFOCOM.2015.7218525>
2. ANSELIN, L. (2002): Under the hood issues in the specification and interpretation of spatial regression models. Agricultural economics, 27, 3, 247–267.
<https://doi.org/10.1111/j.1574-0862.2002.tb00120.x>
3. AYODEJI, O.G., KUMAR, V. (2019): Social media analytics: a tool for the success of online retail industry. International Journal of Services Operations and Informatics, 10, 1, 79–95.
<https://doi.org/10.1504/IJSOI.2019.100630>
4. BARTHOLOMEW, K., EWING, R. (2010): Hedonic Price Effects of Pedestrian-and Transit-Designed Development. Journal of Planning Literature.
<https://doi.org/10.1177/0885412210386540>
5. BAYODE, T., POPOOLA, A., AKOGUN, O., SIEGMUND, A., MAGIDIMISHA-CHIPUNGU, H., IPINGBEMI, O. (2022): Spatial variability of COVID-19 and its risk factors in Nigeria: A spatial regression method. Applied Geography, 138, 102621.
<https://doi.org/10.1016/j.apgeog.2021.102621>
6. CAPOZZA, D.R., HELSLEY, R.W. (1989): The fundamentals of land prices and urban growth. Journal of Urban Economics, 26, 3, 295–306.
<https://doi.org/10.1016/0094-1190(89)90003-X>
7. CHAO, T., DU, R., GLUCK, J., MAIDASANI, H., WILLS, K., SHNEIDERMAN, B. (2013): C-flow: Visualizing foot traffic and profit data to make informative decisions. Technical report, University of Maryland. Online: http://duruofei.com/Dev/c-flow
8. CHEN, L., LU, Y., YE, Y., XIAO, Y., YANG, L. (2022): Examining the association between the built environment and pedestrian volume using street view images. Cities, 103734.
<https://doi.org/10.1016/j.cities.2022.103734>
9. CORTRIGHT, J. (2009): Walking the walk: How walkability raises home values in US cities. Durham, NC: CEOs for Cities.
10. DOBLER, G., VANI, J., DAM, T.T.L. (2021): Patterns of urban foot traffic dynamics. Computers, Environment and Urban Systems, 89, 101674.
<https://doi.org/10.1016/j.compenvurbsys.2021.101674>
11. DOLEGA, L., ROWE, F., BRANAGAN, E. (2021): Going digital? The impact of social media marketing on retail website traffic, orders and sales. Journal of Retailing and Consumer Services, 60, 102501.
<https://doi.org/10.1016/j.jretconser.2021.102501>
12. DUBROCA-VOISIN, M., KABALAN, B., LEURENT, F. (2019): On pedestrian traffic management in railway stations: simulation needs and model assessment. Transportation research procedia, 37, 3–10.
<https://doi.org/10.1016/j.trpro.2018.12.159>
13. FENG, C., FAY, S. (2022): An empirical investigation of forward-looking retailer performance using parking lot traffic data derived from satellite imagery. Journal of Retailing.
<https://doi.org/10.1016/j.jretai.2022.03.004>
14. GERIKE, R., KOSZOWSKI, C., SCHRÖTER, B., BUEHLER, R., SCHEPERS, P., WEBER, J., JONES, P. (2021): Built environment determinants of pedestrian activities and their consideration in urban street design. Sustainability, 13, 16, 9362.
<https://doi.org/10.3390/su13169362>
15. GUO, L., WANG, L., LIU, J., ZHOU, W. (2016): A survey on motion detection using WiFi signals. In 2016 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), IEEE, 202–206.
<https://doi.org/10.1109/MSN.2016.040>
16. HABAEBI, M., ROSLI, R., ISLAM, M.R. (2017): RSSI-based human presence detection system for energy saving automation. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 5, 4, 339–350.
<https://doi.org/10.11591/ijeei.v5i4.356>
17. HOSFORD, K., CLOUTIER, M.S., WINTERS, M. (2020): Observational study of pedestrian and cyclist interactions at intersections in Vancouver, BC and Montréal, QC. Transportation research record, 2674, 6, 410–419.
<https://doi.org/10.1177/0361198120919407>
18. LAM, B.Y., CHAU, K.W. (2012): Explaining the variations in the pedestrian flow values of shopping centres. Facilities, 30, 3/4, 164–176.
<https://doi.org/10.1108/02632771211202860>
19. LEE, K.M., JUNG, C.M. (2014): The effect of time period pedestrian volume on store location: focused on the Suwon’s retail stores and restaurants. Journal of the Architectural Institute of Korea, 30, 8, 47–55.
<https://doi.org/10.5659/JAIK_PD.2014.30.8.47>
20. MA, Y., ZHOU, G., WANG, S. (2019): WiFi sensing with channel state information: A survey. ACM Computing Surveys (CSUR), 52, 3, 1–36.
<https://doi.org/10.1145/3310194>
21. NING, H., YE, X., CHEN, Z., LIU, T., CAO, T. (2022): Sidewalk extraction using aerial and street view images. Environment and Planning B: Urban Analytics and City Science, 49, 1, 7–22.
<https://doi.org/10.1177/2399808321995817>
22. PATRA, M., SALA, E., RAVISHANKAR, K.V.R. (2017): Evaluation of pedestrian flow characteristics across different facilities inside a railway station. Transportation research procedia, 25, 4763–4770.
<https://doi.org/10.1016/j.trpro.2017.05.488>
23. PERDIKAKI, O., KESAVAN, S., SWAMINATHAN, J. M. (2012): Effect of traffic on sales and conversion rates of retail stores. Manufacturing & Service Operations Management, 14, 1, 145–162.
<https://doi.org/10.1287/msom.1110.0356>
24. PHAM, L.T.N. (2023): Real estate prices in Hanoi pedestrian streets. In E3S Web of Conferences, EDP Sciences, 403, 01003.
<https://doi.org/10.1051/e3sconf/202340301003>
25. PINEDA-RÍOS, W., GIRALDO, R., PORCU, E. (2019): Functional SAR models: With application to spatial econometrics. Spatial statistics, 29, 145–159.
<https://doi.org/10.1016/j.spasta.2018.12.002>
26. PIVO, G., FISHER, J.D. (2011): The walkability premium in commercial real estate investments. Real estate economics, 39, 2, 185–219.
<https://doi.org/10.1111/j.1540-6229.2010.00296.x>
27. QIAN, F., ZHANG, Q., ZHANG, X. (2023): The Effects of Agglomeration on Customer Traffic & Commercial Real Estate Values: Evidence from Grocery Store Openings.
28. RAUTERKUS, S.Y., MILLER, N. (2011): Residential land values and walkability. Journal of Sustainable Real Estate, 3, 1, 23–43.
<https://doi.org/10.1080/10835547.2011.12091815>
29. SEVTSUK, A., KALVO, R. (2022): Predicting pedestrian flow along city streets: A comparison of route choice estimation approaches in downtown San Francisco. International Journal of Sustainable Transportation, 16, 3, 222–236.
<https://doi.org/10.1080/15568318.2020.1858377>
30. SHIN, H.S., WOO, A. (2024): Analyzing the effects of walkable environments on nearby commercial property values based on deep learning approaches. Cities, 144, 104628.
<https://doi.org/10.1016/j.cities.2023.104628>
31. SOHN, D.W., MOUDON, A.V., LEE, J. (2012): The economic value of walkable neighborhoods. Urban Design International, 17, 115–128.
<https://doi.org/10.1057/udi.2012.1>
32. SUN, H., CHEN, J., FAN, M. (2021): Effect of Live Chat on Traffic‐to‐Sales Conversion: Evidence from an Online Marketplace. Production and Operations Management, 30, 5, 1201–1219.
<https://doi.org/10.1111/poms.13320>
33. SUN, H., FAN, M., TAN, Y. (2020): An empirical analysis of seller advertising strategies in an online marketplace. Information Systems Research, 31, 1, 37–56.
<https://doi.org/10.1287/isre.2019.0874>
34. TAN, Q., LING, X., CHEN, M., LU, H., WANG, P., LIU, W. (2019): Statistical analysis and prediction of regional bus passenger flows. International Journal of Modern Physics B, 33, 11, 1950094.
<https://doi.org/10.1142/S0217979219501017>
35. TRASBERG, T., SOUNDARARAJ, B., CHESHIRE, J. (2021): Using Wi-Fi probe requests from mobile phones to quantify the impact of pedestrian flows on retail turnover. Computers, Environment and Urban Systems, 87, 101601.
<https://doi.org/10.1016/j.compenvurbsys.2021.101601>
36. WANG, X., LIONO, J., MCINTOSH, W., SALIM, F. D. (2017): Predicting the city foot traffic with pedestrian sensor data. In Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, 1–10.
<https://doi.org/10.1145/3144457.3152355>
37. WANG, Y., ZHANG, W., ZHANG, F., YIN, L., ZHANG, J., TIAN, C., JIANG, W. (2020): Analysis of subway passenger flow based on smart card data. In 2020 6th International Conference on Big Data Computing and Communications (BIGCOM), IEEE, 198–202.
<https://doi.org/10.1109/BigCom51056.2020.00034>
38. WARD, M.D., GLEDITSCH, K.S. (2018): Spatial regression models, 155. Sage Publications.
<https://doi.org/10.4135/9781071802588>
39. WASHINGTON, E. (2013): Role of walkability in driving home values. Leadership and Management in Engineering, 13, 3, 123–130.
<https://doi.org/10.1061/(ASCE)LM.1943-5630.0000222>