Geografie 2023, 128, 379-396
https://doi.org/10.37040/geografie.2023.017
Spatial changes in two major modes of atmospheric circulation variability during the 20th century
References
1. BARNES, E.A., SCREEN, J.A. (2015): The impact of Arctic warming on the midlatitude jetstream: Can it? Has it? Will it? WIREs Climate Change, 3, 6, 277−286.
<https://doi.org/10.1002/wcc.337>
2. BARNSTON, A.G., LIVEZEY, R.E. (1987): Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly weather review, 6, 115, 1083−1126.
<https://doi.org/10.1175/1520-0493(1987)1152.0.CO;2>
3. BENDER, F.A.-M., RAMANATHAN, V., TSELIOUDIS, G. (2012): Changes in extratropical storm track cloudiness 1983−2008: observational support for a poleward shift. Climate Dynamics, 9–10, 38, 2037–2053.
<https://doi.org/10.1007/s00382-011-1065-6>
4. COMPAGNUCCI, R.H., RICHMAN, M.B. (2008): Can principal component analysis provide atmospheric circulation or teleconnection patterns? International Journal of Climatology, 6, 28, 703−726.
<https://doi.org/10.1002/joc.1574>
5. COMPO, G.P., WHITAKER, J.S., SARDESHMUKH, P.D., MATSUI, N., ALLAN, R.J., YIN, X., GLEASON, B.E., VOSE, R.S., RUTLEDGE, G., BESSEMOULIN, P., BRÖNNIMANN, S., BRUNET, M., CROUTHAMEL, R.I., GRANT, A.N., GROISMAN, P.Y., JONES, P.D., KRUK, M.C., KRUGER, A.C., MARSHALL, G.J., MAUGERI, M., MOK, H.Y., NORDLI, Ø., ROSS, T. F., TRIGO, R.M., WANG, X.L., WOODRUFF, S.D., WORLEY, S.J. (2011): The Twentieth Century Reanalysis Project: The Twentieth Century Reanalysis Project. Quarterly Journal of the Royal Meteorological Society, 654, 137, 1−28.
<https://doi.org/10.1002/qj.776>
6. DING, Q., SCHWEIGER, A., L’HEUREUX, M., BATTISTI, D.S., PO-CHEDLEY, S., JOHNSON, N.C., BLANCHARD-WRIGGLESWORTH, E., HARNOS, K., ZHANG, Q., EASTMAN, R., STEIG, E.J. (2017): Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nature Climate Change, 4, 7, 289−295.
<https://doi.org/10.1038/nclimate3241>
7. FRICH, P., ALEXANDER, L., DELLA-MARTA, P., GLEASON, B., HAYLOCK, M., KLEIN TANK, A., PETERSON, T. (2002): Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19, 193−212.
<https://doi.org/10.3354/cr019193>
8. GAN, B., WU, L., JIA, F., LI, S., CAI, W., NAKAMURA, H., ALEXANDER, M.A., MILLER, A.J. (2017): On the Response of the Aleutian Low to Greenhouse Warming. Journal of Climate, 10, 30, 3907−3925.
<https://doi.org/10.1175/JCLI-D-15-0789.1>
9. GARCÍA-SERRANO, J., HAARSMA, R.J. (2017): Non-annular, hemispheric signature of the winter North Atlantic Oscillation. Climate Dynamics, 11−12, 48, 3659–3670.
<https://doi.org/10.1007/s00382-016-3292-3>
10. GULEV, S.K., GRIGORIEVA, V. (2006): Variability of the Winter Wind Waves and Swell in the North Atlantic and North Pacific as Revealed by the Voluntary Observing Ship Data. Journal of Climate, 21, 19, 5667−5685.
<https://doi.org/10.1175/JCLI3936.1>
11. HANDORF, D., DETHLOFF, K. (2012): How well do state-of-the-art atmosphere-ocean general circulation models reproduce atmospheric teleconnection patterns? Tellus A: Dynamic Meteorology and Oceanography, 1, 64, 19777.
<https://doi.org/10.3402/tellusa.v64i0.19777>
12. HANNA, E., CROPPER, T.E., HALL, R.J., CAPPELEN, J. (2016): Greenland Blocking Index 1851−2015: a regional climate change signal. International Journal of Climatology, 15, 36, 4847–4861.
<https://doi.org/10.1002/joc.4673>
13. HANNACHI, A., JOLLIFFE, I.T., STEPHENSON, D.B. (2007): Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology, 9, 27, 1119−1152.
<https://doi.org/10.1002/joc.1499>
14. HE, J., SODEN, B.J. (2015): Anthropogenic Weakening of the Tropical Circulation: The Relative Roles of Direct CO2 Forcing and Sea Surface Temperature Change. Journal of Climate, 22, 28, 8728−8742.
<https://doi.org/10.1175/JCLI-D-15-0205.1>
15. HERTIG, E., BECK, C., WANNER, H., JACOBEIT, J. (2015): A review of non-stationarities in climate variability of the last century with focus on the North Atlantic–European sector. Earth-Science Reviews, 147, 1−17.
<https://doi.org/10.1016/j.earscirev.2015.04.009>
16. HILMER, M., JUNG, T. (2000): Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic Sea ice export. Geophysical Research Letters, 7, 27, 989−992.
<https://doi.org/10.1029/1999GL010944>
17. HORTON, D.E., JOHNSON, N.C., SINGH, D., SWAIN, D.L., RAJARATNAM, B., DIFFENBAUGH, N.S. (2015): Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 7557, 522, 465−469.
<https://doi.org/10.1038/nature14550>
18. HURRELL, J.W. (1995): Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science, 5224, 269, 676−679.
<https://doi.org/10.1126/science.269.5224.676>
19. HURRELL, J.W., VAN LOON, H. (1997): Decadal Variations in Climate Associated with the North Atlantic Oscillation. In: Diaz, H.F., Beniston, M., Bradley, R.S. (eds.): Climatic Change at High Elevation Sites. Springer Netherlands, Dordrecht, 69−94.
<https://doi.org/10.1007/978-94-015-8905-5_4>
20. HUTH, R. (2006): The effect of various methodological options on the detection of leading modes of sea level pressure variability. Tellus A: Dynamic Meteorology and Oceanography, 1, 58, 121−130.
<https://doi.org/10.1111/j.1600-0870.2006.00158.x>
21. HUTH, R., BECK, C., PHILIPP, A., DEMUZERE, M., USTRNUL, Z., CAHYNOVÁ, M., KYSELÝ, J., TVEITO, O. E. (2008): Classifications of Atmospheric Circulation Patterns. Annals of the New York Academy of Sciences, 1, 1146, 105−152.
<https://doi.org/10.1196/annals.1446.019>
22. HUTH, R., POKORNÁ, L., BOCHNÍČEK, J., HEJDA, P. (2009): Combined solar and QBO effects on the modes of low-frequency atmospheric variability in the Northern Hemisphere. Journal of Atmospheric and Solar-Terrestrial Physics, 13, 71, 1471−1483.
<https://doi.org/10.1016/j.jastp.2009.04.006>
23. CHOI, H.Y., LEE, H.J., KIM, S.-Y., PARK, W. (2020): Deepening of Future Aleutian Low in Ensemble Global Warming Simulations with the Kiel Climate Model. Ocean Science Journal, 2, 55, 219−230.
<https://doi.org/10.1007/s12601-020-0017-7>
24. JACKSON, J.E. (1991): A user’s guide to principal components. Wiley-Interscience, Hoboken, N.J.
<https://doi.org/10.1002/0471725331>
25. JOLLIFFE, I.T. (2002): Principal component analysis. Springer, New York.
26. JUNG, T., HILMER, M., RUPRECHT, E., KLEPPEK, S., GULEV, S.K., ZOLINA, O. (2003): Characteristics of the Recent Eastward Shift of Interannual NAO Variability. Journal of Climate, 20, 16, 3371−3382.
<https://doi.org/10.1175/1520-0442(2003)0162.0.CO;2>
27. KENNEDY, D., PARKER, T., WOOLLINGS, T., HARVEY, B., SHAFFREY, L. (2016): The response of high-impact blocking weather systems to climate change: Climate change response of blocking. Geophysical Research Letters, 13, 43, 7250−7258.
<https://doi.org/10.1002/2016GL069725>
28. KUČEROVÁ, M., BECK, C., PHILIPP, A., HUTH, R. (2017): Trends in frequency and persistence of atmospheric circulation types over Europe derived from a multitude of classifications: Frequency and persistence of Circulation types in Europe. International Journal of Climatology, 5, 37, 2502−2521.
<https://doi.org/10.1002/joc.4861>
29. KYSELÝ, J., HUTH, R. (2006): Changes in atmospheric circulation over Europe detected by objective and subjective methods. Theoretical and Applied Climatology, 1−2, 85, 19–36.
<https://doi.org/10.1007/s00704-005-0164-x>
30. LEATHERS, D.J., YARNAL, B., PALECKI, M.A. (1991): The Pacific/North American Teleconnection Pattern and United States Climate. Part I: Regional Temperature and Precipitation Associations. Journal of Climate, 5, 4, 517−528.
<https://doi.org/10.1175/1520-0442(1991)0042.0.CO;2>
31. LEE, Y.-Y., KUG, J.-S., LIM, G.-H., WATANABE, M. (2012): Eastward shift of the Pacific/North American pattern on an interdecadal time scale and an associated synoptic eddy feedback. International Journal of Climatology, 7, 32, 1128−1134.
<https://doi.org/10.1002/joc.2329>
32. O’LENIC, E.A., LIVEZEY, R.E. (1988): Practical Considerations in the Use of Rotated Principal Component Analysis (RPCA)in Diagnostic Studies of Upper-Air Height Fields. Monthly Weather Review, 8, 116, 1682−1689.
<https://doi.org/10.1175/1520-0493(1988)1162.0.CO;2>
33. PANAGIOTOPOULOS, F., SHAHGEDANOVA, M., STEPHENSON, D.B. (2002): A review of Northern Hemisphere winter-time teleconnection patterns. Journal de Physique IV (Proceedings), 10, 12, 27−47.
<https://doi.org/10.1051/jp4:20020450>
34. PINTO, J.G., RAIBLE, C.C. (2012): Past and recent changes in the North Atlantic oscillation: Past and recent changes in the NAO. Wiley Interdisciplinary Reviews: Climate Change, 1, 3, 79−90.
<https://doi.org/10.1002/wcc.150>
35. POKORNÁ, L., HUTH, R. (2015): Climate impacts of the NAO are sensitive to how the NAO is defined. Theoretical and Applied Climatology, 3−4, 119, 639–652.
<https://doi.org/10.1007/s00704-014-1116-0>
36. RICHMAN, M.B. (1986): Rotation of principal components. Journal of Climatology, 3, 6, 293−335.
<https://doi.org/10.1002/joc.3370060305>
37. THOMPSON, D.W.J., WALLACE, J.M. (2000): Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability. Journal of Climate, 5, 13, 1000−1016.
<https://doi.org/10.1175/1520-0442(2000)0132.0.CO;2>
38. TRENBERTH, K.E. (1990): Recent Observed Interdecadal Climate Changes in the Northern Hemisphere. Bulletin of the American Meteorological Society, 7, 71, 988−993.
<https://doi.org/10.1175/1520-0477(1990)0712.0.CO;2>
39. TRIGO, R., OSBORN, T., CORTE-REAL, J. (2002): The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Climate Research, 20, 9−17.
<https://doi.org/10.3354/cr020009>
40. ULBRICH, U., LECKEBUSCH, G.C., PINTO, J.G. (2009): Extra-tropical cyclones in the present and future climate: a review. Theoretical and Applied Climatology, 1−2, 96, 117–131.
<https://doi.org/10.1007/s00704-008-0083-8>
41. VAN DEN DOOL, H.M., SAHA, S., JOHANSSON, Å. (2000): Empirical Orthogonal Teleconnections. Journal of Climate, 8, 13, 1421−1435.
<https://doi.org/10.1175/1520-0442(2000)0132.0.CO;2>
42. VAVRUS, S.J., WANG, F., MARTIN, J.E., FRANCIS, J.A., PEINGS, Y., CATTIAUX, J. (2017): Changes in North American Atmospheric Circulation and Extreme Weather: Influence of Arctic Amplification and Northern Hemisphere Snow Cover. Journal of Climate, 11, 30, 4317−4333.
<https://doi.org/10.1175/JCLI-D-16-0762.1>
43. VAVRUS, S., WALSH, J.E., CHAPMAN, W.L., PORTIS, D. (2006): The behavior of extreme cold air outbreaks under greenhouse warming. International Journal of Climatology, 9, 26, 1133−1147.
<https://doi.org/10.1002/joc.1301>
44. WALLACE, J.M., GUTZLER, D.S. (1981): Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Monthly Weather Review, 4, 109, 784−812.
<https://doi.org/10.1175/1520-0493(1981)1092.0.CO;2>
45. WANG, J., KIM, H.-M., CHANG, E.K.M. (2017): Changes in Northern Hemisphere Winter Storm Tracks under the Background of Arctic Amplification. Journal of Climate, 10, 30, 3705−3724.
<https://doi.org/10.1175/JCLI-D-16-0650.1>
46. WANG, X.L., FENG, Y., COMPO, G.P., SWAIL, V.R., ZWIERS, F.W., ALLAN, R.J., SARDESHMUKH, P.D. (2013): Trends and low frequency variability of extra-tropical cyclone activity in the ensemble of twentieth century reanalysis. Climate Dynamics, 11−12, 40, 2775–2800.
<https://doi.org/10.1007/s00382-012-1450-9>
47. WANG, Y.-H., MAGNUSDOTTIR, G., STERN, H., TIAN, X., YU, Y. (2012): Decadal variability of the NAO: Introducing an augmented NAO index: The angle index and the smooth nao index. Geophysical Research Letters, 21, 39, L21702
<https://doi.org/10.1029/2012GL053413>
48. WILKS, D.S. (2011): Statistical methods in the atmospheric sciences. Elsevier/Academic Press, Amsterdam, Boston.
49. WOOLLINGS, T., BARRIOPEDRO, D., METHVEN, J., SON, S.-W., MARTIUS, O., HARVEY, B., SILLMANN, J., LUPO, A. R., SENEVIRATNE, S. (2018): Blocking and its Response to Climate Change. Current Climate Change Reports, 3, 4, 287−300.
<https://doi.org/10.1007/s40641-018-0108-z>
50. ZHANG, X., SORTEBERG, A., ZHANG, J., GERDES, R., COMISO, J.C. (2008): Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophysical Research Letters, 22, 35, L22701.
<https://doi.org/10.1029/2008GL035607>