Geografie 2023, 128, 351-377

https://doi.org/10.37040/geografie.2023.012

Traditional and novel approaches to studying the human thermal environment in urban areas: A critical review of the current state of the art

Michal Lehnert1ID, Jan Geletič2,3ID, Martin Jurek1ID

1Palacký University, Faculty of Science, Department of Geography, Olomouc, Czechia
2Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
3Institute of Computer Science of the Czech Academy of Sciences, Department of Complex Systems, Prague, Czechia

Received December 2022
Accepted March 2023

References

1. ASHRAE (2017): Thermal environmental conditions for human occupancy (ANSI/ASHRAE standard 55−2017). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta (USA).
2. AUBRECHTOVÁ, T., GELETIČ, J., HALÁSOVÁ, O., LEHNERT, M., DOBROVOLNÝ, P. (2019): Administrativní reakce českých měst na adaptační procesy související s klimatickými změnami. Urbanismus a územní rozvoj, 22, 1, 4−12.
3. BELL, S., CORNFORD, D., BASTIN, L. (2015): How good are citizen weather stations? Addressing a biased opinion. Weather, 70, 75−84. <https://doi.org/10.1002/wea.2316>
4. BŁAŻEJCZYK, K., KUCHCIK, M., BŁAŻEJCZYK, A., MILEWSKI, P., SZMYD, J. (2014): Assessment of urban thermal stress by UTCI – experimental and modelling studies: an example from Poland. Die Erde – Journal of the Geographical Society of Berlin, 145, 1−2, 16−33.
5. BOKWA, A., GELETIČ, J., LEHNERT, M., ŽUVELA-ALOISE, M., HOLLÓSI, B., GÁL, T., SKARBIT, N., DOBROVOLNÝ, P., HAJTO, M. J., KIELAR, R., WALAWENDER, J. P., ŠŤASTNÝ, P., HOLEC, J., OSTAPOWICZ, K., BURIANOVÁ, J., GARAJ, M. (2019): Heat load assessment in Central European cities using an urban climate model and observational monitoring data. Energy and Buildings, 201, 53−69. <https://doi.org/10.1016/j.enbuild.2019.07.023>
6. BRAZEL, A. J. (2017): Urban climate and physical geography: a response to Ashmore and Dodson. The Canadian Geographer, 61, 1, 112−116. <https://doi.org/10.1111/cag.12351>
7. BRISUDOVÁ, L., ŠIMÁČEK, P., ŠERÝ, M. (2020): Mapping topo-ambivalent places for the purposes of strategic planning of urban space. The case of Šternberk, the Czech Republic. Journal of Maps, 16, 1, 203−209. <https://doi.org/10.1080/17445647.2020.1844087>
8. BRUSE, M. (2004): Envi-Met 3.0: Updated Model Overview; University of Bochum: Bochum, Germany, http://www.envi-met.net/documents/papers/overview30.pdf (10. 8. 2021).
9. COHEN, P., SHASHUA-BAR, L., KELLER, R., GIL-AD, R., YAAKOV, Y., LUKYANOV, V., BAR, P., TANNY, J., COHEN, S., POTCHTER, O. (2019): Urban outdoor thermal perception in hot arid Beer Sheva, Israel: methodological and gender aspects. Building and Environment, 160, 106169. <https://doi.org/10.1016/j.buildenv.2019.106169>
10. CRESWELL, J. W. (2009): Research design: qualitative, quantitative, and mixed methods approaches (3rd ed.). Sage Publications, Thousand Oaks (Kanada).
11. ČSN EN ISO 9886:2004 Ergonomie – Hodnocení tepelné zátěže podle fyziologických měření.
12. DOBROVOLNÝ, P, KRAHULA, L. (2015): The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic. Moravian Geographical Reports, 23, 3, 8−16. <https://doi.org/10.1515/mgr-2015-0013>
13. DOBROVOLNÝ, P., ŘEZNÍČKOVÁ, L., BRÁZDIL, R., KRAHULA, L., ZAHRADNÍČEK, P., HRADIL, M., DOLEŽELOVÁ, M., ŠÁLEK, M., ŠTĚPÁNEK, P., ROŽNOVSKÝ, J., VALÁŠEK, H., KIRCHNER, K., KOLEJKA, J. (2012): Klima Brna. Víceúrovňová analýza městského klimatu. Masarykova univerzita, Brno.
14. FERANEC, J., KOPECKÁ, M., SZATMÁRI, D., HOLEC, J., ŠŤASTNÝ, P., PAZÚR, R., BOBÁĽOVÁ, H. (2019): A review of studies involving the effect of land cover and land use on the urban heat island phenomenon, assessed by means of the MUKLIMO model. Geografie, 124, 1, 83−101. <https://doi.org/10.37040/geografie2019124010083>
15. FIALA, D., HAVENITH, G., BRÖDE, P., KAMPMANN, B., JENDRITZKY, G. (2012): UTCI-Fiala multi-node model of human heat transfer and temperature regulation. International Journal of Biometeorology, 56, 3, 429−441. <https://doi.org/10.1007/s00484-011-0424-7>
16. FRÖHLICH, J., VON TERZI, D. (2008): Hybrid LES/RANS methods for the simulation of turbulent flows. Progress in Aerospace Sciences, 44, 5, 349−377. <https://doi.org/10.1016/j.paerosci.2008.05.001>
17. GAITANI, N., BURUD, I., THIIS, T., SANTAMOURIS, M. (2017): High-resolution spectral mapping of urban thermal properties with Unmanned Aerial Vehicles. Building and Environment, 121, 215−224. <https://doi.org/10.1016/j.buildenv.2017.05.027>
18. GARUMA, G. F. (2018): Review of urban surface parameterizations for numerical climate models. Urban Climate, 24, 830−851. <https://doi.org/10.1016/j.uclim.2017.10.006>
19. GELETIČ, J., LEHNERT, M., DOBROVOLNÝ, P. (2016): Land surface temperature differences within local climate zones, based on two central European cities. Remote Sensing, 8, 10, 788. <https://doi.org/10.3390/rs8100788>
20. GELETIČ, J., LEHNERT, M., DOBROVOLNÝ, P., ŽUVELA-ALOISE, M. (2019): Spatial modelling of summer climate indices based on local climate zones: expected changes in the future climate of Brno, Czech Republic. Climatic Change, 152, 3, 487−502. <https://doi.org/10.1007/s10584-018-2353-5>
21. GELETIČ, J., LEHNERT, M., RESLER, J., KRČ, P. (2020): Teplota ve městě: přehled používaných termínů a jejich rozdíly. Urbanismus a územní rozvoj, 23, 4, 17−21.
22. HAVENITH, G., FIALA, D., BŁAZEJCZYK, K., RICHARDS, M., BRÖDE, P., HOLMÉR, I., RINTAMAKI, H., BENSHABAT, Y., JENDRITZKY, G. (2012): The UTCI-clothing model. International Journal of Biometeorology, 56, 3, 461−470. <https://doi.org/10.1007/s00484-011-0451-4>
23. HIRASHIMA, S. Q. D. S., ASSIS, E. S. D., NIKOLOPOULOU, M. (2016): Daytime thermal comfort in urban spaces: a field study in Brazil. Building and Environment, 107, 245−253. <https://doi.org/10.1016/j.buildenv.2016.08.006>
24. HÖPPE, P. (1999): The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43, 2, 71−75. <https://doi.org/10.1007/s004840050118>
25. HOWE, J. (2006): The rise of crowdsourcing. Wired Magazine, 14, 6, 1−4.
26. HOYANO, A., ASANO, K., KANAMARU, T. (1999): Analysis of the sensible heat flux from the exterior surface of buildings using time sequential thermography. Atmospheric Environment, 33, 24−25, 3941−3951. <https://doi.org/10.1016/S1352-2310(99)00136-3>
27. CHAPMAN, L., BELL, C., BELL, S. (2017): Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using Netatmo weather stations. International Journal of Climatology, 37, 9, 3597−3605. <https://doi.org/10.1002/joc.4940>
28. CHEN, L., NG, E. (2012): Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities, 29, 2, 118−125. <https://doi.org/10.1016/j.cities.2011.08.006>
29. CHING, J., MILLS, G., BECHTEL, B., SEE, L., FEDDEMA, J., WANG, X., REN, C., BROUSSE, O., MARTILLI, A., NEOPHYTOU, M., MOUZOURIDES, P. STEWART, I., HANNA, A., NG, E., FOLEY, M., ALEXANDER, P. ALIAGA, D., NIYOGI, D., SHREEVASTAVA, A., BHALACHANDRAN, P., MASSON, V., HIDALGO, J., FUNG, J., ANDRADE, M., BAKLANOV, A., DAI, W., MILCINSKI, G., DEMUZERE, M., BRUNSELL, N., PESARESI, M., MIAO, S., MU, Q., CHEN, F., THEEUWES, N. (2018): WUDAPT: An urban weather, climate, and environmental modeling infrastructure for the anthropocene. Bulletin of the American Meteorological Society, 99, 9, 1907−1924. <https://doi.org/10.1175/BAMS-D-16-0236.1>
30. CHLAPCOVÁ, L., URBAN, A., KYSELÝ, J. (2021): Vliv městského prostředí na tepelnou zátěž v centru Prahy. Meteorologické zprávy, 74, 4, 113−120.
31. CHUI, A. C., GITTELSON, A., SEBASTIAN, E., STAMLER, N., GAFFIN, S. R. (2018): Urban heat islands and cooler infrastructure: measuring near-surface temperatures with hand-held infrared cameras. Urban Climate, 24, 51−62. <https://doi.org/10.1016/j.uclim.2017.12.009>
32. IPCC (2021): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
33. ISO 7726:1998 Ergonomics of the thermal environment – Instruments for measuring physical quantities.
34. ISO 7730:2005 Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.
35. ISO 10551:2019 Ergonomics of the physical environment – Subjective judgement scales for assessing physical environments.
36. JENDRITZKY, G., DE DEAR, R., HAVENITH, G. (2012): UTCI – why another thermal index? International Journal of Biometeorology, 56, 3, 421−428. <https://doi.org/10.1007/s00484-011-0513-7>
37. KÁNTOR, N. (2016): Differences between the evaluation of thermal environment in shaded and sunny position. Hungarian Geographical Bulletin, 65, 2, 139−153. <https://doi.org/10.15201/hungeobull.65.2.5>
38. KÁNTOR, N., UNGER, J. (2011): The most problematic variable in the course of human-biometeorological comfort assessment – the mean radiant temperature. Central European Journal of Geosciences, 3, 1, 90−100. <https://doi.org/10.2478/s13533-011-0010-x>
39. KÁNTOR, N., UNGER, J., GULYÁS, Á. (2007): Human bioclimatological evaluation with objective and subjective approaches on the thermal conditions of a square in the centre of Szeged. Acta Climatologica et Chorologica, 40−41, 47−58.
40. KLEEREKOPER, L., VAN ESCH, M., SALCEDO, T. B. (2012): How to make a city climateproof, addressing the urban heat island effect. Resources, Conservation and Recycling, 64, 30−38. <https://doi.org/10.1016/j.resconrec.2011.06.004>
41. KNEZ, I., THORSSON, S., ELIASSON, I., LINDBERG, F. (2009): Psychological mechanisms in outdoor place and weather assessment: towards a conceptual model. International Journal of Biometeorology, 53, 1, 101−111. <https://doi.org/10.1007/s00484-008-0194-z>
42. KOVATS, R. S., HAJAT, S. (2008): Heat stress and public health: a critical review. Annual Review of Public Health, 29, 41−55. <https://doi.org/10.1146/annurev.publhealth.29.020907.090843>
43. KRAYENHOFF, E. S., VOOGT, J. A. (2016): Daytime thermal anisotropy of urban neighbourhoods: morphological causation. Remote Sensing, 8, 2, 108. <https://doi.org/10.3390/rs8020108>
44. KRČ, P., RESLER, J., SÜHRING, M., SCHUBERT, S., SALIM, M. H., FUKA, V. (2021): Radiative Transfer Model 3.0 integrated into the PALM model system 6.0. Geoscientific Model Development, 14, 3095−3120. <https://doi.org/10.5194/gmd-14-3095-2021>
45. KRKOŠKA LORENCOVÁ, E., LOUČKOVÁ, B., VAČKÁŘŮ, D. (2019): Perception of climate change risk and adaptation in the Czech Republic. Climate, 7, 61. <https://doi.org/10.3390/cli7050061>
46. KRÜGER, E., DRACH, P., EMMANUEL, R., CORBELLA, O. (2013): Urban heat island and differences in outdoor comfort levels in Glasgow, UK. Theoretical and Applied Climatology, 112, 1, 127−141. <https://doi.org/10.1007/s00704-012-0724-9>
47. KŘIŠTOFOVÁ, K., LEHNERT, M., MARTINÁT, S., TOKAR, V., OPRAVIL, Z. (2022): Adaptation to climate change in the eastern regions of the Czech Republic: An analysis of the measures proposed by local governments. Land Use Policy, 114, 105949. <https://doi.org/10.1016/j.landusepol.2021.105949>
48. LEHNERT, M., GELETIČ, J., DOBROVOLNÝ, P., JUREK, M. (2018): Temperature differences among local climate zones established by mobile measurements in two central European cities. Climate Research, 75(1), 53−64. <https://doi.org/10.3354/cr01508>
49. LEHNERT, M., GELETIČ, J., KOPP, J., BRABEC, M., JUREK, M., PÁNEK, J. (2021a): Comparison between mental mapping and land surface temperature in two Czech cities: a new perspective on indication of locations prone to heat stress. Building and Environment, 203, 108090. <https://doi.org/10.1016/j.buildenv.2021.108090>
50. LEHNERT, M., PÁNEK, J., KOPP, J., GELETIČ, J., KVĚTOŇOVÁ, V., JUREK, M. (2023): Thermal comfort in urban areas on hot summer days and its improvement through participatory mapping: A case study of two Central European cities. Landscape and Urban Planning 233, 104713. <https://doi.org/10.1016/j.landurbplan.2023.104713>
51. LEHNERT, M., SAVIĆ, S., MILOŠEVIĆ, D., DUNJIĆ, J., GELETIČ, J. (2021b): Mapping local climate zones and their applications in European urban environments: a systematic literature review and future development trends. ISPRS International Journal of Geo-Information, 10, 4, 260. <https://doi.org/10.3390/ijgi10040260>
52. LEHNERT, M., TOKAR, V., JUREK, M., GELETIČ, J. (2021c): Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres. International Journal of Biometeorology, 65, 1277−1289. <https://doi.org/10.1007/s00484-020-02010-y>
53. LENZHOLZER, S., DUCHHART, I., KOH. J. (2013): ‘Research through designing’ in landscape architecture. Landscape and Urban Planning, 113, 120−127. <https://doi.org/10.1016/j.landurbplan.2013.02.003>
54. LENZHOLZER, S., KLEMM, W., VASILIKOU, C. (2018): Qualitative methods to explore thermo-spatial perception in outdoor urban spaces. Urban Climate, 23, 231−249. <https://doi.org/10.1016/j.uclim.2016.10.003>
55. MANOLI, G., FATICHI, S., SCHLÄPFER, M., YU, K., CROWTHER, T.W., MEILI, N., BURLANDO, P., KATUL, G.G., BOU-ZEID, E. (2019): Magnitude of urban heat islands largely explained by climate and population. Nature, 573 (7772), 55−60. <https://doi.org/10.1038/s41586-019-1512-9>
56. MANOLI, G., FATICHI, S., SCHLÄPFER, M., YU, K., CROWTHER, T.W., MEILI, N., BURLANDO, P., KATUL, G.G., BOU-ZEID, E. (2020): “Reply to Martilli et al. (2020): Summer average urban-rural surface temperature differences do not indicate the need for urban heat reduction.” OSF Preprints. <https://doi.org/10.31219/osf.io/mwpna>
57. MARONGA, B., BANZHAF, S., BURMEISTER, C., ESCH, T., FORKEL, R., FRÖHLICH, D., FUKA, V., GEHRKE, K. F., GELETIČ, J., GIERSCH, S., GRONEMEIER, T., GroS, G., HELDENS, W., HELLSTEN, A., HOFFMANN, F., INAGAKI, A., KADASCH, E., KANANI-SÜHRING, F., KETELSEN, K., KHAN, B. A., KNIGGE, C., KNOOP, H., KRČ, P., KURPPA, M., MAAMARI, H., MATZARAKIS, A., MAUDER, M., PALLASCH, M., PAVLIK, D., PFAFFEROTT, J., RESLER, J., RISSMANN, S., RUSSO, E., SALIM, M., SCHREMPF, M., SCHWENKEL, J., SECKMEYER, G., SCHUBERT, S., SÜHRING, M., VON TILS, R., VOLLMER, L., WARD, S., WITHA, B., WURPS, H., ZEIDLER, J., RAASCH, S. (2020): Overview of the PALM model system 6.0. Geoscientific Model Development, 13, 3, 1335−1372. <https://doi.org/10.5194/gmd-13-1335-2020>
58. MARTILLI, A., KRAYENHOFF, E.S., NAZARIAN, N. (2020): Is the urban heat island intensity relevant for heat mitigation studies? Urban Climate, 31, 100541. <https://doi.org/10.1016/j.uclim.2019.100541>
59. MATZARAKIS, A., MAYER, H. (1996): Another kind of environmental stress: thermal stress. WHO Collaborating Centre for Air Quality Management and Air Pollution Control, Newsletters, 18, 7−10.
60. MATZARAKIS, A., MAYER, H., IZIOMON, M. G. (1999): Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, 43, 2, 76−84. <https://doi.org/10.1007/s004840050119>
61. MAYER, H., HOLST, J., DOSTAL, P., IMBERY, F., SCHINDLER, D. (2008): Human thermal comfort in summer within an urban street canyon in Central Europe. Meteorologische Zeitschrift, 17, 3, 241−250. <https://doi.org/10.1127/0941-2948/2008/0285>
62. MEIER, F., FENNER, D., GRASSMANN, T., OTTO, M., SCHERER, D. (2017): Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Climate, 19, 170−191. <https://doi.org/10.1016/j.uclim.2017.01.006>
63. MELHUISH, E., PEDDER, M. (1998): Observing an urban heat island by bicycle. Weather, 53, 4, 121−128. <https://doi.org/10.1002/j.1477-8696.1998.tb03974.x>
64. MIDDEL, A., KRAYENHOFF, E. S. (2019): Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform. Science of The Total Environment, 687, 137−151. <https://doi.org/10.1016/j.scitotenv.2019.06.085>
65. MILLS, G., STEWART, I. D., NIYOGI, D. (2022): The origins of modern urban climate science: reflections on ‘A numerical model of the urban heat island’. Progress in Physical Geography: Earth and Environment, 03091333221107212. <https://doi.org/10.1177/03091333221107212>
66. MILOŠEVIĆ, D., SAVIĆ, S., ŠEĆEROV, I., DUNJIĆ, J. (2022): Introducing Mobile Micrometeorological Carts (MMCs) for urban and non-urban micrometeorological measurements. EMS Annual Meeting 2022, Bonn, Germany, 5−9 Sep 2022, EMS2022-59. <https://doi.org/10.5194/ems2022-59>
67. MULLER, C. L., CHAPMAN, L., GRIMMOND, C. S. B., YOUNG, D. T., CAI, X. (2013a): Sensors and the city: a review of urban meteorological networks. International Journal of Climatology, 33, 7, 1585−1600. <https://doi.org/10.1002/joc.3678>
68. MULLER, C. L., CHAPMAN, L., GRIMMOND, C. S. B., YOUNG, D. T., CAI, X. M. (2013b): Toward a standardized metadata protocol for urban meteorological networks. Bulletin of the American Meteorological Society, 94, 8, 1161−1185. <https://doi.org/10.1175/BAMS-D-12-00096.1>
69. MURAKAMI, S., OOKA, R., MOCHIDA, A., YOSHIDA, S., KIM, S. (1999): CFD analysis of wind climate from human scale to urban scale. Journal of Wind Engineering and Industrial Aerodynamics, 81, 1−3, 57−81. <https://doi.org/10.1016/S0167-6105(99)00009-4>
70. MUSY, M., MALYS, L., MORILLE, B., INARD, C. (2015): The use of SOLENE-microclimate model to assess adaptation strategies at the district scale. Urban Climate, 14, 213−223. <https://doi.org/10.1016/j.uclim.2015.07.004>
71. NAUGHTON, J., MCDONALD, W. (2019): Evaluating the variability of urban land surface temperatures using drone observations. Remote Sensing, 11, 14, 1722. <https://doi.org/10.3390/rs11141722>
72. NIKOLOPOULOU, M., BAKER, N., STEEMERS, K. (2001): Thermal comfort in outdoor urban spaces: understanding the human parameter. Solar Energy, 70, 3, 227−235. <https://doi.org/10.1016/S0038-092X(00)00093-1>
73. OKE, T. R. (2002): Boundary layer climates (2nd Ed.). Routledge. <https://doi.org/10.4324/9780203407219>
74. OKE, T. R. (2004): Initial guidance to obtain representative meteorological observations at urban sites. IOM Rep.81, WMO/TD-No. 1250. World Meteorological Organization.
75. ONCLEY, S. P., SCHWENZ, K., BURNS, S. P., SUN, J., MONSON, R. K. (2009): A cable-borne tram for atmospheric measurements along transects. Journal of Atmospheric and Oceanic Technology, 26, 3, 462−473. <https://doi.org/10.1175/2008JTECHA1158.1>
76. OSN (2018): World urbanization prospects: the 2018 revision. https://population.un.org/wup/ (15. 8. 2022).
77. PARSONS, K. (2014): Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance (3rd Ed.). CRC Press. <https://doi.org/10.1201/b16750>
78. PEARLMUTTER, D., JIAO, D., GARB, Y. (2014): The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces. International Journal of Biometeorology, 58, 10, 2111−2127. <https://doi.org/10.1007/s00484-014-0812-x>
79. POTCHTER, O., COHEN, P., LIN, T.-P., MATZARAKIS, A. (2018): Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of The Total Environment, 631−632, 390−406. <https://doi.org/10.1016/j.scitotenv.2018.02.276>
80. POUR, T., MIŘIJOVSKÝ, J., PURKET, T. (2019): Airborne thermal remote sensing: the case of the city of Olomouc, Czech Republic. European Journal of Remote Sensing, 52(sup1), 209−218. <https://doi.org/10.1080/22797254.2018.1564888>
81. QUITT, E. (1972): Měřicí jízdy jako jedna z cest k racionalizaci mezoklimatického výzkumu. Meteorologické zprávy, 25, 6, 172−176.
82. RAO, P. K. (1972): Remote sensing of urban heat islands from an environmental satellite. Bulletin of the American Meteorological Society, 53, 647−648. <https://doi.org/10.1175/1520-0477-53.7.648>
83. RESLER, J., EBEN, K., GELETIČ, J., KRČ, P., ROSECKÝ, M., SÜHRING, M., BELDA, M., FUKA, V., HALENKA, T., HUSZÁR, P., KARLICKÝ, J., BENEŠOVÁ, N., ĎOUBALOVÁ, J., HONZÁKOVÁ, K., KEDER, J., NÁPRAVNÍKOVÁ, Š., VLČEK, O. (2021): Validation of the PALM model system 6.0 in a real urban environment: a case study in Dejvice, Prague, the Czech Republic. Geoscientific Model Development, 14, 8, 4797−4842. <https://doi.org/10.5194/gmd-14-4797-2021>
84. RESLER, J., KRČ, P., BELDA, M., JURUŠ, P., BENEŠOVÁ, N., LOPATA, J., VLČEK, O., DAMAŠKOVÁ, D., EBEN, K., DERBEK, P., MARONGA, B., AND KANANI-SÜHRING, F. (2017): PALM-USM v1.0: A new urban surface model integrated into the PALM largeeddy simulation model, Geoscientific Model Development, 10, 10, 3635−3659. <https://doi.org/10.5194/gmd-10-3635-2017>
85. RØD, J. K., MAARSE, M. J. (2021): Using citizen sensing to identify heat-exposed neighbourhoods. Urban Science, 5, 1, 14. <https://doi.org/10.3390/urbansci5010014>
86. ROSENZWEIG, C., SOLECKI, W. D., ROMERO-LANKAO, P., MEHROTRA, S., DHAKAL, S., ALI IBRAHIM, S., eds. (2018): Climate change and cities: Second assessment report of the urban climate change research network. Cambridge University Press. <https://doi.org/10.1017/9781316563878>
87. SANTAMOURIS, M., PAPANIKOLAOU, N., LIVADA, I., KORONAKIS, I., GEORGAKIS, C., ARGIRIOU, A., ASSIMAKOPOULOS, D. N. (2001): On the impact of urban climate on the energy consumption of buildings. Solar Energy, 70, 3, 201−216. <https://doi.org/10.1016/S0038-092X(00)00095-5>
88. SAVIČ, S., MILOŠEVIČ, D., ŠEĆEROV, I., ARSENOVIĆ, D., LAZIĆ, L., DUNJIĆ, J. (2021): The role of climatological research in improving urban environments. In: 5th Serbian Congress of Geographers “Innovative approach and perspectives of the applied geography”, 9−11 September 2021, Novi Sad, Serbia, Abstract book: 15.
89. SHOOSHTARIAN, S. (2019): Theoretical dimension of outdoor thermal comfort research. Sustainable Cities and Society, 47, 101495. <https://doi.org/10.1016/j.scs.2019.101495>
90. SCHMIDT, K. J., POPPENDIECK, H.-H., JENSEN, K. (2014): Effects of urban structure on plant species richness in a large European city. Urban Ecosystems, 17, 2, 427−444. <https://doi.org/10.1007/s11252-013-0319-y>
91. SCHNELL, I., COHEN, P., MANDELMILCH, M., POTCHTER, O. (2021): Portable-trackable methodologies for measuring personal and place exposure to nuisances in urban environments: towards a people oriented paradigm. Computers, Environment and Urban Systems, 86, 101589. <https://doi.org/10.1016/j.compenvurbsys.2020.101589>
92. SCHNELL, I., POTCHTER, O., YAAKOV, Y., EPSTEIN, Y. (2016): Human exposure to environmental health concern by types of urban environment: the case of Tel Aviv. Environmental Pollution, 208, 58−65. <https://doi.org/10.1016/j.envpol.2015.08.040>
93. SIEVERS, U. (2012): Das kleinskalige Strömungsmodell MUKLIMO_3 Teil 1: Theoretische Grundlagen, PC-Basisversion und Validierung. Berichte des Deutschen Wetterdienstes, Band 240, Offenbach am Main.
94. SKARBIT, N., GÁL, T., UNGER, J. (2015): Airborne surface temperature differences of the different Local Climate Zones in the urban area of a medium sized city. 2015 Joint Urban Remote Sensing Event (JURSE), 1−4. <https://doi.org/10.1109/JURSE.2015.7120497>
95. STEWART, I. D. (2011): A systematic review and scientific critique of methodology in modern urban heat island literature. International Journal of Climatology, 31, 2, 200−217. <https://doi.org/10.1002/joc.2141>
96. STEWART, I. D. (2019): Why should urban heat island researchers study history? Urban Climate, 30, 100484. <https://doi.org/10.1016/j.uclim.2019.100484>
97. STEWART, I. D., OKE, T. R. (2012): Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93, 12, 1879−1900. <https://doi.org/10.1175/BAMS-D-11-00019.1>
98. STŘEDOVÁ, H., CHUCHMA, F., ROŽNOVSKÝ, J., STŘEDA, T. (2021): Local climate zones, land surface temperature and air temperature interactions: case study of Hradec Králové, the Czech Republic. ISPRS International Journal of Geo-Information, 10,10, 704. <https://doi.org/10.3390/ijgi10100704>
99. SUTER, I., GRYLLS, T., SÜTZL, B. S., OWENS, S. O., WILSON, C. E., VAN REEUWIJK, M. (2022): uDALES 1.0: a large-eddy simulation model for urban environments. Geoscientific Model Development, 15, 5309−5335. <https://doi.org/10.5194/gmd-15-5309-2022>
100. ŠEĆEROV, I., SAVIĆ, S., MILOŠEVIĆ, D., MARKOVIĆ, V., BAJŠANSKI, I. (2015): Development of an automated urban climate monitoring system in Novi Sad (Serbia). Geographica Pannonica, 19, 4, 174−183. <https://doi.org/10.5937/GeoPan1504174S>
101. ŠŤASTNÝ, P. (1996): Výsledky mobilních meraní teploty a vlhkosti vzduchu v Košiciách. In: Zborník prác SHMÚ, 39, Slovenský hydrometeorologický ústav, 79−111.
102. ŠTĚPÁNEK, P., ZAHRADNÍČEK, P., SKALÁK, P. (2009): Data quality control and homogenization of air temperature and precipitation series in the area of the Czech Republic in the period 1961−2007. Advances in Science and Research, 3, 1, 23−26. <https://doi.org/10.5194/asr-3-23-2009>
103. THORSSON, S., LINDQVIST, M., LINDQVIST, S. (2004): Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. International Journal of Biometeorology, 48, 3, 149−156. <https://doi.org/10.1007/s00484-003-0189-8>
104. TOMÁŠ, M., VYSOUDIL, M. (2010): Mobilní měření: Prostředek při studiu prostorové variability teploty vzduchu v městské a příměstské krajině. In: Geografie pro život ve 21. století: Sborník příspěvků z XXII. sjezdu ČGS (31. 8. − 3. 9. 2010). Ostrava, Ostravská univerzita v Ostravě.
105. TSIN, P. K., KNUDBY, A., KRAYENHOFF, E. S., HO, H. C., BRAUER, M., HENDERSON, S. B. (2016): Microscale mobile monitoring of urban air temperature. Urban Climate, 18, 58−72. <https://doi.org/10.1016/j.uclim.2016.10.001>
106. UNGER, J., SÜMEGHY, Z., ZOBOKI, J. (2001): Temperature cross-section features in an urban area. Atmospheric Research, 58, 2, 117−127. <https://doi.org/10.1016/S0169-8095(01)00087-4>
107. URBAN, A., FONSECA-RODRÍGUEZ, O., DI NAPOLI, C., PLAVCOVÁ, E. (2022): Temporal changes of heat-attributable mortality in Prague, Czech Republic, over 1982−2019. Urban Climate, 44, 101197. <https://doi.org/10.1016/j.uclim.2022.101197>
108. Úřad vlády České republiky (2017): Strategický rámec Česká republika 2030. Příloha 1: Indikátory ke specifickým cílům strategického rámce Česká republika 2030.
109. USGS (2016): Landsat – Earth observation satellites (ver. 1.2, April 2020). U.S. Geological Survey Fact Sheet 2015−3081.
110. USGS (2019): Landsat 8 (L8) Data Users Handbook (LSDS-1574, Version 5.0). https://www.usgs.gov/media/files/landsat-8-data-users-handbook (10. 9. 2022).
111. USGS (2022): Landsat 8−9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. Version 4.0.
112. VALENZUELA, A., REINKE, K., JONES, S. (2022): A new metric for the assessment of spatial resolution in satellite imagers. International Journal of Applied Earth Observation and Geoinformation, 114, 103051. <https://doi.org/10.1016/j.jag.2022.103051>
113. VANOS, J. K., RYKACZEWSKI, K., MIDDEL, A., VECELLIO, D. J., BROWN, R. D., GILLESPIE, T. J. (2021): Improved methods for estimating mean radiant temperature in hot and sunny outdoor settings. International Journal of Biometeorology, 65, 6, 967−983. <https://doi.org/10.1007/s00484-021-02131-y>
114. VOOGT, J. A., OKE, T. R. (1998a): Effects of urban surface geometry on remotely-sensed surface temperature. International Journal of Remote Sensing, 19, 5, 895−920. <https://doi.org/10.1080/014311698215784>
115. VOOGT, J. A., OKE, T. R. (1998b): Radiometric temperatures of urban canyon walls obtained from vehicle traverses. Theoretical and Applied Climatology, 60, 1, 199−217. <https://doi.org/10.1007/s007040050044>
116. VYSOUDIL, M., FRAJER, J., GELETIČ, J., LEHNERT, M., LIPINA, P., PAVELKOVÁ CHMELOVÁ, R., ŘEPKA, M. (2012): Podnebí Olomouce. Univerzita Palackého v Olomouci.
117. WMO (2008): Guide to meteorological instruments and methods of observation. Seventh edition. Geneva: World Meteorological Organization.
118. YOSHIDA, A., HISABAYASHI, T., KASHIHARA, K., KINOSHITA, S., HASHIDA, S. (2015): Evaluation of effect of tree canopy on thermal environment, thermal sensation, and mental state. Urban Climate, 14, 240−250. <https://doi.org/10.1016/j.uclim.2015.09.004>
119. ŽÁK, M., NITA, I. A., DUMITRESCU, A., CHEVAL, S. (2020): Influence of synoptic scale atmospheric circulation on the development of urban heat island in Prague and Bucharest. Urban Climate, 34, 100681. <https://doi.org/10.1016/j.uclim.2020.100681>
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive