Geografie 2023, 128, 351-377
https://doi.org/10.37040/geografie.2023.012
Traditional and novel approaches to studying the human thermal environment in urban areas: A critical review of the current state of the art
References
1. ASHRAE (2017): Thermal environmental conditions for human occupancy (ANSI/ASHRAE standard 55−2017). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta (USA).
2. 2019): Administrativní reakce českých měst na adaptační procesy související s klimatickými změnami. Urbanismus a územní rozvoj, 22, 1, 4−12.
, T., GELETIČ, J., HALÁSOVÁ, O., LEHNERT, M., DOBROVOLNÝ, P. (
3. BELL, S., CORNFORD, D., BASTIN, L. (2015): How good are citizen weather stations? Addressing a biased opinion. Weather, 70, 75−84.
<https://doi.org/10.1002/wea.2316>
4. 2014): Assessment of urban thermal stress by UTCI – experimental and modelling studies: an example from Poland. Die Erde – Journal of the Geographical Society of Berlin, 145, 1−2, 16−33.
, K., KUCHCIK, M., BŁAŻEJCZYK, A., MILEWSKI, P., SZMYD, J. (
5. BOKWA, A., GELETIČ, J., LEHNERT, M., ŽUVELA-ALOISE, M., HOLLÓSI, B., GÁL, T., SKARBIT, N., DOBROVOLNÝ, P., HAJTO, M. J., KIELAR, R., WALAWENDER, J. P., ŠŤASTNÝ, P., HOLEC, J., OSTAPOWICZ, K., BURIANOVÁ, J., GARAJ, M. (2019): Heat load assessment in Central European cities using an urban climate model and observational monitoring data. Energy and Buildings, 201, 53−69.
<https://doi.org/10.1016/j.enbuild.2019.07.023>
6. BRAZEL, A. J. (2017): Urban climate and physical geography: a response to Ashmore and Dodson. The Canadian Geographer, 61, 1, 112−116.
<https://doi.org/10.1111/cag.12351>
7. BRISUDOVÁ, L., ŠIMÁČEK, P., ŠERÝ, M. (2020): Mapping topo-ambivalent places for the purposes of strategic planning of urban space. The case of Šternberk, the Czech Republic. Journal of Maps, 16, 1, 203−209.
<https://doi.org/10.1080/17445647.2020.1844087>
8. BRUSE, M. (2004): Envi-Met 3.0: Updated Model Overview; University of Bochum: Bochum, Germany, http://www.envi-met.net/documents/papers/overview30.pdf (10. 8. 2021).
9. COHEN, P., SHASHUA-BAR, L., KELLER, R., GIL-AD, R., YAAKOV, Y., LUKYANOV, V., BAR, P., TANNY, J., COHEN, S., POTCHTER, O. (2019): Urban outdoor thermal perception in hot arid Beer Sheva, Israel: methodological and gender aspects. Building and Environment, 160, 106169.
<https://doi.org/10.1016/j.buildenv.2019.106169>
10. CRESWELL, J. W. (2009): Research design: qualitative, quantitative, and mixed methods approaches (3rd ed.). Sage Publications, Thousand Oaks (Kanada).
11. ČSN EN ISO 9886:2004 Ergonomie – Hodnocení tepelné zátěže podle fyziologických měření.
12. DOBROVOLNÝ, P, KRAHULA, L. (2015): The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic. Moravian Geographical Reports, 23, 3, 8−16.
<https://doi.org/10.1515/mgr-2015-0013>
13. DOBROVOLNÝ, P., ŘEZNÍČKOVÁ, L., BRÁZDIL, R., KRAHULA, L., ZAHRADNÍČEK, P., HRADIL, M., DOLEŽELOVÁ, M., ŠÁLEK, M., ŠTĚPÁNEK, P., ROŽNOVSKÝ, J., VALÁŠEK, H., KIRCHNER, K., KOLEJKA, J. (2012): Klima Brna. Víceúrovňová analýza městského klimatu. Masarykova univerzita, Brno.
14. FERANEC, J., KOPECKÁ, M., SZATMÁRI, D., HOLEC, J., ŠŤASTNÝ, P., PAZÚR, R., BOBÁĽOVÁ, H. (2019): A review of studies involving the effect of land cover and land use on the urban heat island phenomenon, assessed by means of the MUKLIMO model. Geografie, 124, 1, 83−101.
<https://doi.org/10.37040/geografie2019124010083>
15. FIALA, D., HAVENITH, G., BRÖDE, P., KAMPMANN, B., JENDRITZKY, G. (2012): UTCI-Fiala multi-node model of human heat transfer and temperature regulation. International Journal of Biometeorology, 56, 3, 429−441.
<https://doi.org/10.1007/s00484-011-0424-7>
16. FRÖHLICH, J., VON TERZI, D. (2008): Hybrid LES/RANS methods for the simulation of turbulent flows. Progress in Aerospace Sciences, 44, 5, 349−377.
<https://doi.org/10.1016/j.paerosci.2008.05.001>
17. GAITANI, N., BURUD, I., THIIS, T., SANTAMOURIS, M. (2017): High-resolution spectral mapping of urban thermal properties with Unmanned Aerial Vehicles. Building and Environment, 121, 215−224.
<https://doi.org/10.1016/j.buildenv.2017.05.027>
18. GARUMA, G. F. (2018): Review of urban surface parameterizations for numerical climate models. Urban Climate, 24, 830−851.
<https://doi.org/10.1016/j.uclim.2017.10.006>
19. GELETIČ, J., LEHNERT, M., DOBROVOLNÝ, P. (2016): Land surface temperature differences within local climate zones, based on two central European cities. Remote Sensing, 8, 10, 788.
<https://doi.org/10.3390/rs8100788>
20. GELETIČ, J., LEHNERT, M., DOBROVOLNÝ, P., ŽUVELA-ALOISE, M. (2019): Spatial modelling of summer climate indices based on local climate zones: expected changes in the future climate of Brno, Czech Republic. Climatic Change, 152, 3, 487−502.
<https://doi.org/10.1007/s10584-018-2353-5>
21. 2020): Teplota ve městě: přehled používaných termínů a jejich rozdíly. Urbanismus a územní rozvoj, 23, 4, 17−21.
, J., LEHNERT, M., RESLER, J., KRČ, P. (
22. HAVENITH, G., FIALA, D., BŁAZEJCZYK, K., RICHARDS, M., BRÖDE, P., HOLMÉR, I., RINTAMAKI, H., BENSHABAT, Y., JENDRITZKY, G. (2012): The UTCI-clothing model. International Journal of Biometeorology, 56, 3, 461−470.
<https://doi.org/10.1007/s00484-011-0451-4>
23. HIRASHIMA, S. Q. D. S., ASSIS, E. S. D., NIKOLOPOULOU, M. (2016): Daytime thermal comfort in urban spaces: a field study in Brazil. Building and Environment, 107, 245−253.
<https://doi.org/10.1016/j.buildenv.2016.08.006>
24. HÖPPE, P. (1999): The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43, 2, 71−75.
<https://doi.org/10.1007/s004840050118>
25. 2006): The rise of crowdsourcing. Wired Magazine, 14, 6, 1−4.
, J. (
26. HOYANO, A., ASANO, K., KANAMARU, T. (1999): Analysis of the sensible heat flux from the exterior surface of buildings using time sequential thermography. Atmospheric Environment, 33, 24−25, 3941−3951.
<https://doi.org/10.1016/S1352-2310(99)00136-3>
27. CHAPMAN, L., BELL, C., BELL, S. (2017): Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using Netatmo weather stations. International Journal of Climatology, 37, 9, 3597−3605.
<https://doi.org/10.1002/joc.4940>
28. CHEN, L., NG, E. (2012): Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities, 29, 2, 118−125.
<https://doi.org/10.1016/j.cities.2011.08.006>
29. CHING, J., MILLS, G., BECHTEL, B., SEE, L., FEDDEMA, J., WANG, X., REN, C., BROUSSE, O., MARTILLI, A., NEOPHYTOU, M., MOUZOURIDES, P. STEWART, I., HANNA, A., NG, E., FOLEY, M., ALEXANDER, P. ALIAGA, D., NIYOGI, D., SHREEVASTAVA, A., BHALACHANDRAN, P., MASSON, V., HIDALGO, J., FUNG, J., ANDRADE, M., BAKLANOV, A., DAI, W., MILCINSKI, G., DEMUZERE, M., BRUNSELL, N., PESARESI, M., MIAO, S., MU, Q., CHEN, F., THEEUWES, N. (2018): WUDAPT: An urban weather, climate, and environmental modeling infrastructure for the anthropocene. Bulletin of the American Meteorological Society, 99, 9, 1907−1924.
<https://doi.org/10.1175/BAMS-D-16-0236.1>
30. 2021): Vliv městského prostředí na tepelnou zátěž v centru Prahy. Meteorologické zprávy, 74, 4, 113−120.
, L., URBAN, A., KYSELÝ, J. (
31. CHUI, A. C., GITTELSON, A., SEBASTIAN, E., STAMLER, N., GAFFIN, S. R. (2018): Urban heat islands and cooler infrastructure: measuring near-surface temperatures with hand-held infrared cameras. Urban Climate, 24, 51−62.
<https://doi.org/10.1016/j.uclim.2017.12.009>
32. IPCC (2021): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
33. ISO 7726:1998 Ergonomics of the thermal environment – Instruments for measuring physical quantities.
34. ISO 7730:2005 Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.
35. ISO 10551:2019 Ergonomics of the physical environment – Subjective judgement scales for assessing physical environments.
36. JENDRITZKY, G., DE DEAR, R., HAVENITH, G. (2012): UTCI – why another thermal index? International Journal of Biometeorology, 56, 3, 421−428.
<https://doi.org/10.1007/s00484-011-0513-7>
37. KÁNTOR, N. (2016): Differences between the evaluation of thermal environment in shaded and sunny position. Hungarian Geographical Bulletin, 65, 2, 139−153.
<https://doi.org/10.15201/hungeobull.65.2.5>
38. KÁNTOR, N., UNGER, J. (2011): The most problematic variable in the course of human-biometeorological comfort assessment – the mean radiant temperature. Central European Journal of Geosciences, 3, 1, 90−100.
<https://doi.org/10.2478/s13533-011-0010-x>
39. 2007): Human bioclimatological evaluation with objective and subjective approaches on the thermal conditions of a square in the centre of Szeged. Acta Climatologica et Chorologica, 40−41, 47−58.
, N., UNGER, J., GULYÁS, Á. (
40. KLEEREKOPER, L., VAN ESCH, M., SALCEDO, T. B. (2012): How to make a city climateproof, addressing the urban heat island effect. Resources, Conservation and Recycling, 64, 30−38.
<https://doi.org/10.1016/j.resconrec.2011.06.004>
41. KNEZ, I., THORSSON, S., ELIASSON, I., LINDBERG, F. (2009): Psychological mechanisms in outdoor place and weather assessment: towards a conceptual model. International Journal of Biometeorology, 53, 1, 101−111.
<https://doi.org/10.1007/s00484-008-0194-z>
42. KOVATS, R. S., HAJAT, S. (2008): Heat stress and public health: a critical review. Annual Review of Public Health, 29, 41−55.
<https://doi.org/10.1146/annurev.publhealth.29.020907.090843>
43. KRAYENHOFF, E. S., VOOGT, J. A. (2016): Daytime thermal anisotropy of urban neighbourhoods: morphological causation. Remote Sensing, 8, 2, 108.
<https://doi.org/10.3390/rs8020108>
44. KRČ, P., RESLER, J., SÜHRING, M., SCHUBERT, S., SALIM, M. H., FUKA, V. (2021): Radiative Transfer Model 3.0 integrated into the PALM model system 6.0. Geoscientific Model Development, 14, 3095−3120.
<https://doi.org/10.5194/gmd-14-3095-2021>
45. KRKOŠKA LORENCOVÁ, E., LOUČKOVÁ, B., VAČKÁŘŮ, D. (2019): Perception of climate change risk and adaptation in the Czech Republic. Climate, 7, 61.
<https://doi.org/10.3390/cli7050061>
46. KRÜGER, E., DRACH, P., EMMANUEL, R., CORBELLA, O. (2013): Urban heat island and differences in outdoor comfort levels in Glasgow, UK. Theoretical and Applied Climatology, 112, 1, 127−141.
<https://doi.org/10.1007/s00704-012-0724-9>
47. KŘIŠTOFOVÁ, K., LEHNERT, M., MARTINÁT, S., TOKAR, V., OPRAVIL, Z. (2022): Adaptation to climate change in the eastern regions of the Czech Republic: An analysis of the measures proposed by local governments. Land Use Policy, 114, 105949.
<https://doi.org/10.1016/j.landusepol.2021.105949>
48. LEHNERT, M., GELETIČ, J., DOBROVOLNÝ, P., JUREK, M. (2018): Temperature differences among local climate zones established by mobile measurements in two central European cities. Climate Research, 75(1), 53−64.
<https://doi.org/10.3354/cr01508>
49. LEHNERT, M., GELETIČ, J., KOPP, J., BRABEC, M., JUREK, M., PÁNEK, J. (2021a): Comparison between mental mapping and land surface temperature in two Czech cities: a new perspective on indication of locations prone to heat stress. Building and Environment, 203, 108090.
<https://doi.org/10.1016/j.buildenv.2021.108090>
50. LEHNERT, M., PÁNEK, J., KOPP, J., GELETIČ, J., KVĚTOŇOVÁ, V., JUREK, M. (2023): Thermal comfort in urban areas on hot summer days and its improvement through participatory mapping: A case study of two Central European cities. Landscape and Urban Planning 233, 104713.
<https://doi.org/10.1016/j.landurbplan.2023.104713>
51. LEHNERT, M., SAVIĆ, S., MILOŠEVIĆ, D., DUNJIĆ, J., GELETIČ, J. (2021b): Mapping local climate zones and their applications in European urban environments: a systematic literature review and future development trends. ISPRS International Journal of Geo-Information, 10, 4, 260.
<https://doi.org/10.3390/ijgi10040260>
52. LEHNERT, M., TOKAR, V., JUREK, M., GELETIČ, J. (2021c): Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres. International Journal of Biometeorology, 65, 1277−1289.
<https://doi.org/10.1007/s00484-020-02010-y>
53. LENZHOLZER, S., DUCHHART, I., KOH. J. (2013): ‘Research through designing’ in landscape architecture. Landscape and Urban Planning, 113, 120−127.
<https://doi.org/10.1016/j.landurbplan.2013.02.003>
54. LENZHOLZER, S., KLEMM, W., VASILIKOU, C. (2018): Qualitative methods to explore thermo-spatial perception in outdoor urban spaces. Urban Climate, 23, 231−249.
<https://doi.org/10.1016/j.uclim.2016.10.003>
55. MANOLI, G., FATICHI, S., SCHLÄPFER, M., YU, K., CROWTHER, T.W., MEILI, N., BURLANDO, P., KATUL, G.G., BOU-ZEID, E. (2019): Magnitude of urban heat islands largely explained by climate and population. Nature, 573 (7772), 55−60.
<https://doi.org/10.1038/s41586-019-1512-9>
56. MANOLI, G., FATICHI, S., SCHLÄPFER, M., YU, K., CROWTHER, T.W., MEILI, N., BURLANDO, P., KATUL, G.G., BOU-ZEID, E. (2020): “Reply to Martilli et al. (2020): Summer average urban-rural surface temperature differences do not indicate the need for urban heat reduction.” OSF Preprints.
<https://doi.org/10.31219/osf.io/mwpna>
57. MARONGA, B., BANZHAF, S., BURMEISTER, C., ESCH, T., FORKEL, R., FRÖHLICH, D., FUKA, V., GEHRKE, K. F., GELETIČ, J., GIERSCH, S., GRONEMEIER, T., GroS, G., HELDENS, W., HELLSTEN, A., HOFFMANN, F., INAGAKI, A., KADASCH, E., KANANI-SÜHRING, F., KETELSEN, K., KHAN, B. A., KNIGGE, C., KNOOP, H., KRČ, P., KURPPA, M., MAAMARI, H., MATZARAKIS, A., MAUDER, M., PALLASCH, M., PAVLIK, D., PFAFFEROTT, J., RESLER, J., RISSMANN, S., RUSSO, E., SALIM, M., SCHREMPF, M., SCHWENKEL, J., SECKMEYER, G., SCHUBERT, S., SÜHRING, M., VON TILS, R., VOLLMER, L., WARD, S., WITHA, B., WURPS, H., ZEIDLER, J., RAASCH, S. (2020): Overview of the PALM model system 6.0. Geoscientific Model Development, 13, 3, 1335−1372.
<https://doi.org/10.5194/gmd-13-1335-2020>
58. MARTILLI, A., KRAYENHOFF, E.S., NAZARIAN, N. (2020): Is the urban heat island intensity relevant for heat mitigation studies? Urban Climate, 31, 100541.
<https://doi.org/10.1016/j.uclim.2019.100541>
59. 1996): Another kind of environmental stress: thermal stress. WHO Collaborating Centre for Air Quality Management and Air Pollution Control, Newsletters, 18, 7−10.
, A., MAYER, H. (
60. MATZARAKIS, A., MAYER, H., IZIOMON, M. G. (1999): Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, 43, 2, 76−84.
<https://doi.org/10.1007/s004840050119>
61. MAYER, H., HOLST, J., DOSTAL, P., IMBERY, F., SCHINDLER, D. (2008): Human thermal comfort in summer within an urban street canyon in Central Europe. Meteorologische Zeitschrift, 17, 3, 241−250.
<https://doi.org/10.1127/0941-2948/2008/0285>
62. MEIER, F., FENNER, D., GRASSMANN, T., OTTO, M., SCHERER, D. (2017): Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Climate, 19, 170−191.
<https://doi.org/10.1016/j.uclim.2017.01.006>
63. MELHUISH, E., PEDDER, M. (1998): Observing an urban heat island by bicycle. Weather, 53, 4, 121−128.
<https://doi.org/10.1002/j.1477-8696.1998.tb03974.x>
64. MIDDEL, A., KRAYENHOFF, E. S. (2019): Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform. Science of The Total Environment, 687, 137−151.
<https://doi.org/10.1016/j.scitotenv.2019.06.085>
65. MILLS, G., STEWART, I. D., NIYOGI, D. (2022): The origins of modern urban climate science: reflections on ‘A numerical model of the urban heat island’. Progress in Physical Geography: Earth and Environment, 03091333221107212.
<https://doi.org/10.1177/03091333221107212>
66. MILOŠEVIĆ, D., SAVIĆ, S., ŠEĆEROV, I., DUNJIĆ, J. (2022): Introducing Mobile Micrometeorological Carts (MMCs) for urban and non-urban micrometeorological measurements. EMS Annual Meeting 2022, Bonn, Germany, 5−9 Sep 2022, EMS2022-59.
<https://doi.org/10.5194/ems2022-59>
67. MULLER, C. L., CHAPMAN, L., GRIMMOND, C. S. B., YOUNG, D. T., CAI, X. (2013a): Sensors and the city: a review of urban meteorological networks. International Journal of Climatology, 33, 7, 1585−1600.
<https://doi.org/10.1002/joc.3678>
68. MULLER, C. L., CHAPMAN, L., GRIMMOND, C. S. B., YOUNG, D. T., CAI, X. M. (2013b): Toward a standardized metadata protocol for urban meteorological networks. Bulletin of the American Meteorological Society, 94, 8, 1161−1185.
<https://doi.org/10.1175/BAMS-D-12-00096.1>
69. MURAKAMI, S., OOKA, R., MOCHIDA, A., YOSHIDA, S., KIM, S. (1999): CFD analysis of wind climate from human scale to urban scale. Journal of Wind Engineering and Industrial Aerodynamics, 81, 1−3, 57−81.
<https://doi.org/10.1016/S0167-6105(99)00009-4>
70. MUSY, M., MALYS, L., MORILLE, B., INARD, C. (2015): The use of SOLENE-microclimate model to assess adaptation strategies at the district scale. Urban Climate, 14, 213−223.
<https://doi.org/10.1016/j.uclim.2015.07.004>
71. NAUGHTON, J., MCDONALD, W. (2019): Evaluating the variability of urban land surface temperatures using drone observations. Remote Sensing, 11, 14, 1722.
<https://doi.org/10.3390/rs11141722>
72. NIKOLOPOULOU, M., BAKER, N., STEEMERS, K. (2001): Thermal comfort in outdoor urban spaces: understanding the human parameter. Solar Energy, 70, 3, 227−235.
<https://doi.org/10.1016/S0038-092X(00)00093-1>
73. OKE, T. R. (2002): Boundary layer climates (2nd Ed.). Routledge.
<https://doi.org/10.4324/9780203407219>
74. OKE, T. R. (2004): Initial guidance to obtain representative meteorological observations at urban sites. IOM Rep.81, WMO/TD-No. 1250. World Meteorological Organization.
75. ONCLEY, S. P., SCHWENZ, K., BURNS, S. P., SUN, J., MONSON, R. K. (2009): A cable-borne tram for atmospheric measurements along transects. Journal of Atmospheric and Oceanic Technology, 26, 3, 462−473.
<https://doi.org/10.1175/2008JTECHA1158.1>
76. OSN (2018): World urbanization prospects: the 2018 revision. https://population.un.org/wup/ (15. 8. 2022).
77. PARSONS, K. (2014): Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance (3rd Ed.). CRC Press.
<https://doi.org/10.1201/b16750>
78. PEARLMUTTER, D., JIAO, D., GARB, Y. (2014): The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces. International Journal of Biometeorology, 58, 10, 2111−2127.
<https://doi.org/10.1007/s00484-014-0812-x>
79. POTCHTER, O., COHEN, P., LIN, T.-P., MATZARAKIS, A. (2018): Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of The Total Environment, 631−632, 390−406.
<https://doi.org/10.1016/j.scitotenv.2018.02.276>
80. POUR, T., MIŘIJOVSKÝ, J., PURKET, T. (2019): Airborne thermal remote sensing: the case of the city of Olomouc, Czech Republic. European Journal of Remote Sensing, 52(sup1), 209−218.
<https://doi.org/10.1080/22797254.2018.1564888>
81. 1972): Měřicí jízdy jako jedna z cest k racionalizaci mezoklimatického výzkumu. Meteorologické zprávy, 25, 6, 172−176.
, E. (
82. RAO, P. K. (1972): Remote sensing of urban heat islands from an environmental satellite. Bulletin of the American Meteorological Society, 53, 647−648.
<https://doi.org/10.1175/1520-0477-53.7.648>
83. RESLER, J., EBEN, K., GELETIČ, J., KRČ, P., ROSECKÝ, M., SÜHRING, M., BELDA, M., FUKA, V., HALENKA, T., HUSZÁR, P., KARLICKÝ, J., BENEŠOVÁ, N., ĎOUBALOVÁ, J., HONZÁKOVÁ, K., KEDER, J., NÁPRAVNÍKOVÁ, Š., VLČEK, O. (2021): Validation of the PALM model system 6.0 in a real urban environment: a case study in Dejvice, Prague, the Czech Republic. Geoscientific Model Development, 14, 8, 4797−4842.
<https://doi.org/10.5194/gmd-14-4797-2021>
84. RESLER, J., KRČ, P., BELDA, M., JURUŠ, P., BENEŠOVÁ, N., LOPATA, J., VLČEK, O., DAMAŠKOVÁ, D., EBEN, K., DERBEK, P., MARONGA, B., AND KANANI-SÜHRING, F. (2017): PALM-USM v1.0: A new urban surface model integrated into the PALM largeeddy simulation model, Geoscientific Model Development, 10, 10, 3635−3659.
<https://doi.org/10.5194/gmd-10-3635-2017>
85. RØD, J. K., MAARSE, M. J. (2021): Using citizen sensing to identify heat-exposed neighbourhoods. Urban Science, 5, 1, 14.
<https://doi.org/10.3390/urbansci5010014>
86. ROSENZWEIG, C., SOLECKI, W. D., ROMERO-LANKAO, P., MEHROTRA, S., DHAKAL, S., ALI IBRAHIM, S., eds. (2018): Climate change and cities: Second assessment report of the urban climate change research network. Cambridge University Press.
<https://doi.org/10.1017/9781316563878>
87. SANTAMOURIS, M., PAPANIKOLAOU, N., LIVADA, I., KORONAKIS, I., GEORGAKIS, C., ARGIRIOU, A., ASSIMAKOPOULOS, D. N. (2001): On the impact of urban climate on the energy consumption of buildings. Solar Energy, 70, 3, 201−216.
<https://doi.org/10.1016/S0038-092X(00)00095-5>
88. SAVIČ, S., MILOŠEVIČ, D., ŠEĆEROV, I., ARSENOVIĆ, D., LAZIĆ, L., DUNJIĆ, J. (2021): The role of climatological research in improving urban environments. In: 5th Serbian Congress of Geographers “Innovative approach and perspectives of the applied geography”, 9−11 September 2021, Novi Sad, Serbia, Abstract book: 15.
89. SHOOSHTARIAN, S. (2019): Theoretical dimension of outdoor thermal comfort research. Sustainable Cities and Society, 47, 101495.
<https://doi.org/10.1016/j.scs.2019.101495>
90. SCHMIDT, K. J., POPPENDIECK, H.-H., JENSEN, K. (2014): Effects of urban structure on plant species richness in a large European city. Urban Ecosystems, 17, 2, 427−444.
<https://doi.org/10.1007/s11252-013-0319-y>
91. SCHNELL, I., COHEN, P., MANDELMILCH, M., POTCHTER, O. (2021): Portable-trackable methodologies for measuring personal and place exposure to nuisances in urban environments: towards a people oriented paradigm. Computers, Environment and Urban Systems, 86, 101589.
<https://doi.org/10.1016/j.compenvurbsys.2020.101589>
92. SCHNELL, I., POTCHTER, O., YAAKOV, Y., EPSTEIN, Y. (2016): Human exposure to environmental health concern by types of urban environment: the case of Tel Aviv. Environmental Pollution, 208, 58−65.
<https://doi.org/10.1016/j.envpol.2015.08.040>
93. SIEVERS, U. (2012): Das kleinskalige Strömungsmodell MUKLIMO_3 Teil 1: Theoretische Grundlagen, PC-Basisversion und Validierung. Berichte des Deutschen Wetterdienstes, Band 240, Offenbach am Main.
94. SKARBIT, N., GÁL, T., UNGER, J. (2015): Airborne surface temperature differences of the different Local Climate Zones in the urban area of a medium sized city. 2015 Joint Urban Remote Sensing Event (JURSE), 1−4.
<https://doi.org/10.1109/JURSE.2015.7120497>
95. STEWART, I. D. (2011): A systematic review and scientific critique of methodology in modern urban heat island literature. International Journal of Climatology, 31, 2, 200−217.
<https://doi.org/10.1002/joc.2141>
96. STEWART, I. D. (2019): Why should urban heat island researchers study history? Urban Climate, 30, 100484.
<https://doi.org/10.1016/j.uclim.2019.100484>
97. STEWART, I. D., OKE, T. R. (2012): Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93, 12, 1879−1900.
<https://doi.org/10.1175/BAMS-D-11-00019.1>
98. STŘEDOVÁ, H., CHUCHMA, F., ROŽNOVSKÝ, J., STŘEDA, T. (2021): Local climate zones, land surface temperature and air temperature interactions: case study of Hradec Králové, the Czech Republic. ISPRS International Journal of Geo-Information, 10,10, 704.
<https://doi.org/10.3390/ijgi10100704>
99. SUTER, I., GRYLLS, T., SÜTZL, B. S., OWENS, S. O., WILSON, C. E., VAN REEUWIJK, M. (2022): uDALES 1.0: a large-eddy simulation model for urban environments. Geoscientific Model Development, 15, 5309−5335.
<https://doi.org/10.5194/gmd-15-5309-2022>
100. ŠEĆEROV, I., SAVIĆ, S., MILOŠEVIĆ, D., MARKOVIĆ, V., BAJŠANSKI, I. (2015): Development of an automated urban climate monitoring system in Novi Sad (Serbia). Geographica Pannonica, 19, 4, 174−183.
<https://doi.org/10.5937/GeoPan1504174S>
101. ŠŤASTNÝ, P. (1996): Výsledky mobilních meraní teploty a vlhkosti vzduchu v Košiciách. In: Zborník prác SHMÚ, 39, Slovenský hydrometeorologický ústav, 79−111.
102. ŠTĚPÁNEK, P., ZAHRADNÍČEK, P., SKALÁK, P. (2009): Data quality control and homogenization of air temperature and precipitation series in the area of the Czech Republic in the period 1961−2007. Advances in Science and Research, 3, 1, 23−26.
<https://doi.org/10.5194/asr-3-23-2009>
103. THORSSON, S., LINDQVIST, M., LINDQVIST, S. (2004): Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. International Journal of Biometeorology, 48, 3, 149−156.
<https://doi.org/10.1007/s00484-003-0189-8>
104. TOMÁŠ, M., VYSOUDIL, M. (2010): Mobilní měření: Prostředek při studiu prostorové variability teploty vzduchu v městské a příměstské krajině. In: Geografie pro život ve 21. století: Sborník příspěvků z XXII. sjezdu ČGS (31. 8. − 3. 9. 2010). Ostrava, Ostravská univerzita v Ostravě.
105. TSIN, P. K., KNUDBY, A., KRAYENHOFF, E. S., HO, H. C., BRAUER, M., HENDERSON, S. B. (2016): Microscale mobile monitoring of urban air temperature. Urban Climate, 18, 58−72.
<https://doi.org/10.1016/j.uclim.2016.10.001>
106. UNGER, J., SÜMEGHY, Z., ZOBOKI, J. (2001): Temperature cross-section features in an urban area. Atmospheric Research, 58, 2, 117−127.
<https://doi.org/10.1016/S0169-8095(01)00087-4>
107. URBAN, A., FONSECA-RODRÍGUEZ, O., DI NAPOLI, C., PLAVCOVÁ, E. (2022): Temporal changes of heat-attributable mortality in Prague, Czech Republic, over 1982−2019. Urban Climate, 44, 101197.
<https://doi.org/10.1016/j.uclim.2022.101197>
108. Úřad vlády České republiky (2017): Strategický rámec Česká republika 2030. Příloha 1: Indikátory ke specifickým cílům strategického rámce Česká republika 2030.
109. USGS (2016): Landsat – Earth observation satellites (ver. 1.2, April 2020). U.S. Geological Survey Fact Sheet 2015−3081.
110. USGS (2019): Landsat 8 (L8) Data Users Handbook (LSDS-1574, Version 5.0). https://www.usgs.gov/media/files/landsat-8-data-users-handbook (10. 9. 2022).
111. USGS (2022): Landsat 8−9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. Version 4.0.
112. VALENZUELA, A., REINKE, K., JONES, S. (2022): A new metric for the assessment of spatial resolution in satellite imagers. International Journal of Applied Earth Observation and Geoinformation, 114, 103051.
<https://doi.org/10.1016/j.jag.2022.103051>
113. VANOS, J. K., RYKACZEWSKI, K., MIDDEL, A., VECELLIO, D. J., BROWN, R. D., GILLESPIE, T. J. (2021): Improved methods for estimating mean radiant temperature in hot and sunny outdoor settings. International Journal of Biometeorology, 65, 6, 967−983.
<https://doi.org/10.1007/s00484-021-02131-y>
114. VOOGT, J. A., OKE, T. R. (1998a): Effects of urban surface geometry on remotely-sensed surface temperature. International Journal of Remote Sensing, 19, 5, 895−920.
<https://doi.org/10.1080/014311698215784>
115. VOOGT, J. A., OKE, T. R. (1998b): Radiometric temperatures of urban canyon walls obtained from vehicle traverses. Theoretical and Applied Climatology, 60, 1, 199−217.
<https://doi.org/10.1007/s007040050044>
116. VYSOUDIL, M., FRAJER, J., GELETIČ, J., LEHNERT, M., LIPINA, P., PAVELKOVÁ CHMELOVÁ, R., ŘEPKA, M. (2012): Podnebí Olomouce. Univerzita Palackého v Olomouci.
117. WMO (2008): Guide to meteorological instruments and methods of observation. Seventh edition. Geneva: World Meteorological Organization.
118. YOSHIDA, A., HISABAYASHI, T., KASHIHARA, K., KINOSHITA, S., HASHIDA, S. (2015): Evaluation of effect of tree canopy on thermal environment, thermal sensation, and mental state. Urban Climate, 14, 240−250.
<https://doi.org/10.1016/j.uclim.2015.09.004>
119. ŽÁK, M., NITA, I. A., DUMITRESCU, A., CHEVAL, S. (2020): Influence of synoptic scale atmospheric circulation on the development of urban heat island in Prague and Bucharest. Urban Climate, 34, 100681.
<https://doi.org/10.1016/j.uclim.2020.100681>