Geografie 2022, 127, 219-240
https://doi.org/10.37040/geografie.2022.008
Looking into the green roof scenario to mitigate flash flood effects in Mamak, Turkey, via classifying images of Sentinel-1, 2, and PlanetScope satellites with LibSVM algorithm in Google Earth Engine cloud platform
References
1. 2013): Modelling purchasing demand of urban people for ornamental plants using logistic regression analysis: sample of Malatya City. Journal of Animal and Veterinary Advances, 12, 16, 1317–1324.
, A., ASLAN, F., YILMAZ, B., ATEŞ, O. (
2. BARNES, K.B., MORGAN, J., ROBERGE, M. (2001): Impervious surfaces and the quality of natural and built environments. In Baltimore, MD: The Department of Geography and Environmental Planning, Towson University.
3. 2017): Water Quality Impacts of Green Roofs Compared with Other Vegetated Sites. Journal of Sustainable Water in the Built Environment, 3, 3, 4017007.
< , C.M., GALLAGHER, P.M., WADZUK, B.M., WELKER, A.L. (https://doi.org/10.1061/JSWBAY.0000825>
4. 2021): Statistical features for land use and land cover classification in Google Earth Engine. Remote Sensing Applications: Society and Environment, 21, 100459.
< , W.R., LÓ, T.B., JOHANN, J.A., MERCANTE, E. (https://doi.org/10.1016/j.rsase.2020.100459>
5. 2005): Hydrological function of a thin extensive green roof in southern Sweden. Hydrology Research, 36, 3, 259–268.
< , L., GRAHN, L., OLSSON, J. (https://doi.org/10.2166/nh.2005.0019>
6. 2010): Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 36, 4, 351–360.
< , J.C. (https://doi.org/10.1016/j.ecoleng.2009.12.014>
7. 2013): A Study on Green Roofs with the Examples from the World and Turkey. Gazi University Journal of Science, 26, 2, 303–318.
, F., ERBAS, M. (
8. 2017): Green roofs in temperate climate cities in Europe–An analysis of key decision factors. Urban Forestry & Urban Greening, 21, 224–234.
< , T., SANGKAKOOL, T. (https://doi.org/10.1016/j.ufug.2016.12.008>
9. 2006): Hydrologic behavior of vegetated roofs 1. JAWRA Journal of the American Water Resources Association, 42, 5, 1261–1274.
< , T.L., RASMUSSEN, T.C. (https://doi.org/10.1111/j.1752-1688.2006.tb05611.x>
10. 2011): LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2, 27, 1-27.
< , C.-C. (https://doi.org/10.1145/1961189.1961199>
11. CONNELLY, M., LIU, K. (2005): Green roof research in British Columbia: An overview. Proc. of 3rd North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Washington, DC, 4–6.
12. DUNNETT, N., KINGSBURY, N. (2008): Planting Green Roofs and Living Walls. Portland, London: Timber Press Inc.
13. 2018): Kentsel Dönüşüme Natif Bir Yöntem: Yeşil Çati Tasarimi. International Journal of Social Humanities Sciences Research (JSHSR), 5, 20, 745–752.
< , T. (https://doi.org/10.26450/jshsr.412>
14. 2021). Kent İklimine Çatı ve Cephe Bahçelerinin Etkisi. Climate and Health Journal, 1, 2, 101–107.
, A., TOY, S. (
15. 2007): The shuttle radar topography mission. Reviews of Geophysics, 45, 2.
< , T.G., ROSEN, P.A., CARO, E., CRIPPEN, R., DUREN, R., HENSLEY, S., KOBRICK, M., PALLER, M., RODRIGUEZ, E., ROTH, L. (https://doi.org/10.1029/2005RG000183>
16. 2013): 4 Living roofs in 3 locations: Does configuration affect runoff mitigation? Journal of Hydrology, 490, 11–20.
< , E., VOYDE, E., SIMCOCK, R., HONG, Y.S. (https://doi.org/10.1016/j.jhydrol.2013.03.004>
17. 2010): Green roof energy and water related performance in the Mediterranean climate. Building and Environment, 45, 8, 1890–1904.
< , R., PALLA, A., LANZA, L.G., PRINCIPI, P. (https://doi.org/10.1016/j.buildenv.2010.03.001>
18. 2004): Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sensing of Environment, 93, 1–2, 107–117.
< , G.M., MATHUR, A. (https://doi.org/10.1016/j.rse.2004.06.017>
19. 2013): Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 83–92.
< , W.J., DASH, J., WATMOUGH, G., MILTON, E.J. (https://doi.org/10.1016/j.isprsjprs.2013.04.007>
20. GEE (2021): Earth Engine Data Catalog. Google Earth Engine. https://developers.google.com/earth-engine/datasets (16.09.2021).
21. 2017): Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.
< , N., HANCHER, M., DIXON, M., ILYUSHCHENKO, S., THAU, D., MOORE, R. (https://doi.org/10.1016/j.rse.2017.06.031>
22. GRANT, G. (2017): Greater London Authority Urban Greening Factor for London. https://www.london.gov.uk/sites/default/files/urban_greening_factor_for_london_final_report.pdf (16.09.2021).
23. 2016): Mapping urban land use by using landsat images and open social data. Remote Sensing, 8, 2, 151.
< , T., YANG, J., LI, X., GONG, P. (https://doi.org/10.3390/rs8020151>
24. 2019): Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture. ISPRS Journal of Photogrammetry and Remote Sensing, 158, 11–22.
< , D., INTERDONATO, R., GAETANO, R., MINH, D.H.T. (https://doi.org/10.1016/j.isprsjprs.2019.09.016>
25. 2015): Benefits of roof garden in order to usage of urban agriculture at roof garden in high-rise building in Malaysia. Advances in Environmental Biology, 9, 24, 86–92.
, N., UTABERTA, N., YUNOS, M.Y.M., ISMAIL, N.A., ISMAIL, S., ARIFFIN, N.F.M., JAFARI, N., VALIKHANI, M. (
26. 2014): Green space in compact cities: the benefits and values of urban ecosystem services in planning. NA, 26, 2.
, M. (
27. 1987): Introductory digital image processing: A remote sensing perspective. Geocarto International, 2, 1, 65.
< , J.R., LULLA, K. (https://doi.org/10.1080/10106048709354084>
28. JULIE, K., KRAGH, K. (2017): GIS and the Green Space Factor. Using GIS to create a baseline for the Green Space Factor in Copenhagen Municipality: Using GIS to create a baseline for the Green Space Factor in Copenhagen Municipality. Aalborg University.
29. 2019): The Lost Streams of Ankara: A Case Study of Bentderesi. IOP Conference Series: Materials Science and Engineering, 603, 5, 52040.
< , I. (https://doi.org/10.1088/1757-899X/603/5/052040>
30. 2021): Estimating direct economic impacts of severe flood events in Turkey (2015–2020). International Journal of Disaster Risk Reduction, 58, 102222.
< , G., NATHO, S., THIEKEN, A.H. (https://doi.org/10.1016/j.ijdrr.2021.102222>
31. KÖHLER, M., SCHMIDT, M., GRIMME, F.W., LAAR, M., DE ASSUNÇÃO PAIVA, V.L., TAVARES, S. (2002): Green roofs in temperate climates and in the hot‐humid tropics – far beyond the aesthetics. Environmental Management and Health.
32. 2013): Quantitative analysis on the urban flood mitigation effect by the extensive green roof system. Environmental Pollution, 181, 257–261.
< , J.Y., MOON, H.J., KIM, T.I., KIM, H.W., HAN, M.Y. (https://doi.org/10.1016/j.envpol.2013.06.039>
33. 2014): A comprehensive study of green roof performance from environmental perspective. International Journal of Sustainable Built Environment, 3, 1, 127–134.
< , W.C., YEUNG, K.K.A. (https://doi.org/10.1016/j.ijsbe.2014.05.001>
34. 2020): Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping. Remote Sensing of Environment, 237, 111563.
< , W., DONG, R., FU, H., WANG, J., YU, L., GONG, P. (https://doi.org/10.1016/j.rse.2019.111563>
35. 2005): Partially supervised classification of remote sensing images through SVM-based probability density estimation. IEEE Transactions on Geoscience and Remote Sensing, 43, 3, 559–570.
< , P., MOSER, G., SERPICO, S.B. (https://doi.org/10.1109/TGRS.2004.842022>
36. 2011): Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 3, 247–259.
< , G., IM, J., OGOLE, C. (https://doi.org/10.1016/j.isprsjprs.2010.11.001>
37. 2005): Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26, 5, 1007–1011.
< , M., MATHER, P.M. (https://doi.org/10.1080/01431160512331314083>
38. 2018): Classification and mapping of paddy rice by combining Landsat and SAR time series data. Remote Sensing, 10, 3, 447.
< , S., IM, J., PARK, S., YOO, C., HAN, H., RHEE, J. (https://doi.org/10.3390/rs10030447>
39. Planet Team (2018): Planet Application Program Interface: Space for Life on Earth, https://api.planet.com (16.09.2021).
40. 2015): Landsat 8 vs. Landsat 5: A comparison based on urban and peri-urban land cover mapping. International Journal of Applied Earth Observation and Geoinformation, 35, 259–269.
< , D., CHRYSOULAKIS, N., MITRAKA, Z. (https://doi.org/10.1016/j.jag.2014.09.010>
41. 2021): Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation. Remote Sensing, 13, 4, 586.
< , S., SOLANO, F., DI FAZIO, S., MODICA, G. (https://doi.org/10.3390/rs13040586>
42. 2021): Accuracy improvements to pixel-based and object-based lulc classification with auxiliary datasets from Google Earth engine. Remote Sensing, 13, 3, 453.
< , L., CHEN, Z., LI, M., ZHI, J., WANG, H. (https://doi.org/10.3390/rs13030453>
43. 2019): Green Resilient City – A framework to integrate the Green and Open Space Factor and climate simulations into everyday planning to support a green and climate-sensitive landscape and urban development. IOP Conference Series: Earth and Environmental Science, 323, 1, 12082.
< , F., RING, Z., KRAUS, F., KAINZ, A., TÖTZER, T., DAMYANOVIC, D. (https://doi.org/10.1088/1755-1315/323/1/012082>
44. 2021): Fusion of Sentinel-2 and PlanetScope time-series data into daily 3 m surface reflectance and wheat LAI monitoring. International Journal of Applied Earth Observation and Geoinformation, 96, 102260.
< , Y., ZHU, X., DUNKERLEY, D., WALKER, J.P., ZHANG, Y., ROZENSTEIN, O., MANIVASAGAM, V.S., CHENU, K. (https://doi.org/10.1016/j.jag.2020.102260>
45. Sentinel-1 (n.d.). European Space Agency. Retrieved September 14, 2020, from https://sentinel.esa.int/web/sentinel/missions/sentinel-1 (16.09.2021).
46. 2018): Green roof for stormwater management in a highly urbanized area: the case of Seoul, Korea. Sustainability, 10, 3, 584.
< , M., KIM, R., KYUNG-HO, K. (https://doi.org/10.3390/su10030584>
47. 2005): Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal, 2, 4, 263–275.
< , W.D., BONTA, J., THURSTON, H., WARNEMUENDE, E., SMITH, D.R. (https://doi.org/10.1080/15730620500386529>
48. SOZER, B., KOCAMAN, S., NEFESLİOGLU, H.A., FİRAT, O., GOKCEOGLU, C. (2018): Preliminary investigations on flood susceptibility mapping in Ankara (Turkey) using modified analytical hierarchy process (M-AHP).
49. 2010): How increased urbanisation has induced flooding problems in the UK: A lesson for African cities? Physics and Chemistry of the Earth, Parts A/B/C, 35, 13–14, 643–647.
< , A. (https://doi.org/10.1016/j.pce.2010.07.007>
50. TAVUS, B., KOCAMAN, S., GOKCEOGLU, C., NEFESLİOGLU, H.A. (2018): Considerations on the use of Sentinel-1 data ın flood mapping in urban areas: Ankara (Turkey) 2018 floods. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
51. Turkish State Meteorological Service (2022): Extreme Maximum, Minimum and Average Temperatures Measured in Long Period, https://www.mgm.gov.tr/eng/forecast-cities.aspx (16.09.2021).
52. 2005): Green roof stormwater retention: effects of roof surface, slope, and media depth. Journal of Environmental Quality, 34, 3, 1036–1044.
< , N.D., ROWE, D.B., ANDRESEN, J.A., RUGH, C.L., FERNANDEZ, R.T., XIAO, L. (https://doi.org/10.2134/jeq2004.0364>
53. VARTHOLOMAIOS, A., KALOGIROU, N., ATHANASSIOU, E., PAPADOPOULOU, M. (2013): The green space factor as a tool for regulating the urban microclimate in vegetation-deprived Greek cities. International Conference on “Changing Cities”: Spatial, Morphological, Formal & Socio-Economic Dimensions, Skiathos Island.
54. 2005): Response of a Sedum green-roof to individual rain events. Ecological Engineering, 25, 1, 1–7.
< , E.L., BENGTSSON, L. (https://doi.org/10.1016/j.ecoleng.2004.11.008>
55. WANG, L., DIAO, C., XIAN, G., YIN, D., LU, Y., ZOU, S., ERICKSON, T.A. (2020): A summary of the special issue on remote sensing of land change science with Google earth engine.
56. 2020): An urban water extraction method combining deep learning and Google Earth engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 768–781.
, Y., LI, Z., ZENG, C., XIA, G.-S., SHEN, H. (
57. WENG, Q., QUATTROCHI, D.A. (2006): Urban Remote Sensing. CRC Press. Elsevier.
58. 2020): Use of Mamdani fuzzy algorithm for multi-hazard susceptibility assessment in a developing urban settlement (Mamak, Ankara, Turkey). ISPRS International Journal of Geo-Information, 9, 2, 114.
< , T., KOCAMAN, S., GOKCEOGLU, C. (https://doi.org/10.3390/ijgi9020114>