Geografie 2022, 127, 195-218

https://doi.org/10.37040/geografie.2022.006

Cartographic scripts for seismic and geophysical mapping of Ecuador

Polina LemenkovaID

Université libre de Bruxelles, École polytechnique de Bruxelles, Laboratory of Image Synthesis and Analysis, Brussels, Belgium

Received November 2021
Accepted May 2022

References

1. AGURTO-DETZEL, H., FONT, Y., CHARVIS, P., RÉGNIER, M., RIETBROCK, A., AMBROIS, D., PAULATTO, M., ALVARADO, A., BECK, S., COURBOULEX, F., DE BARROS, L., DESCHAMPS, A., HERNANDEZ, M.J., HERNANDEZ, S., HOSKINS, M., LEÓN-RÍOS, S., LYNNER, C., MELTZER, A., MERCERAT, E.D., MICHAUD, F., NOCQUET, J.M., ROLANDONE, F., RUIZ, M., SOTO-CORDERO, L. (2019): Ridge subduction and after slip control aftershock distribution of the 2016 Mw 7.8 Ecuador earthquake. Earth and Planetary Science Letters, 520, 63−76. <https://doi.org/10.1016/j.epsl.2019.05.029>
2. AKHOONDZADEH, M., DE SANTIS, A., MARCHETTI, D., PISCINI, A., CIANCHINI, G. (2018): Multi precursors analysis associated with the powerful Ecuador (MW=7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite and ground data. Advances in Space Research, 61, 1, 248−263. <https://doi.org/10.1016/j.asr.2017.07.014>
3. ALVARADO, A., RUIZ, M., MOTHES, P., YEPES, H., SEGOVIA, M., VACA, M., RAMOS, C., ENRÍQUEZ, W., PONCE, G., JARRÍN, P., AGUILAR, J., ACERO, W., VACA, S., SINGAUCHO, J.C., PACHECO, D., CÓRDOVA, A. (2018): Seismic, volcanic, and geodetic networks in Ecuador: building capacity for monitoring and research. Seismological Research Letters, 89, 432−439. <https://doi.org/10.1785/0220170229>
4. ÁLAVA, J.T., JAILLARD, E. (2005): Provenance of the Upper Cretaceous to upper Eocene clastic sediments of the Western Cordillera of Ecuador: Geodynamic implications. Tectonophysics, 399, 1−4, 279–292. <https://doi.org/10.1016/j.tecto.2004.12.026>
5. ÁLVAREZ, O., FOLGUERA, A., GIMENEZ, M. (2017): Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients. Geodesy and Geodynamics, 8, 1, 49−58. <https://doi.org/10.1016/j.geog.2017.01.005>
6. ARABAMERI, A., PRADHAN, B., REZAEID, K., CONOSCENTI, C. (2019): Gully erosion susceptibility mapping using GIS-based multi-criteria decision analysis techniques. CATENA, 180, 282−297. <https://doi.org/10.1016/j.catena.2019.04.032>
7. ASPDEN, J.A., LITHERLAND, M. (1992): The geology and Mesozoic collisional history of the Cordillera Real, Ecuador. Tectonophysics, 205, 1−3, 187–204. <https://doi.org/10.1016/0040-1951(92)90426-7>
8. BAYKARA, H., CORNEJO, M.H., ESPINOZA, A., GARCÍA, E., ULLOA, N. (2020): Preparation, characterization, and evaluation of compressive strength of polypropylene fiber reinforced geopolymer mortars. Heliyon, 6, 4, e03755. <https://doi.org/10.1016/j.heliyon.2020.e03755>
9. BEAUVAL, C., MARINIÈRE, J., YEPES, H., AUDIN, L., NOCQUET, J.M., ALVARADO, A., BAIZE, S., AGUILAR, J., SINGAUCHO, J.C., JOMARD, H. (2018): A new seismic hazard model for Ecuador Bull. Bulletin of the Seismological Society of America, 108, 1443−1464. <https://doi.org/10.1785/0120170259>
10. BERÁNEK, T. (1991): Cartographic Synthesis and Synthetic Map. Geografie, 96, 3, 177−183. <https://doi.org/10.37040/geografie1991096030177>
11. BERÁNEK, T. (1995): Expert Systems and Their Cartographic Applications. Geografie, 100, 1, 35−41. <https://doi.org/10.37040/geografie1995100010035>
12. BYDEKERKE, L., VAN RANST, E., VANMECHELEN, L., GROENEMANS, R. (1998): Land suitability assessment for cherimoya in southern Ecuador using expert knowledge and GIS. Agriculture, Ecosystems & Environment, 69, 2, 89−98. <https://doi.org/10.1016/S0167-8809(98)00090-5>
13. CABRAL, A.E., NETO, R.M. (2020): Mapeamento geomorfológico do município de Campos, Gerais, Sul de Minas Gerais. Caminhos de Geografia, 21, 76, 42−56. <https://doi.org/10.14393/RCG217647141>
14. CEVALLOS-MERKI, L., JOERIN, J. (2021): Chapter 11 – Social capital in disaster recovery: A case study after the 2016 earthquake in Ecuador. In: Mendes, J.M., Kalonji, G., Jigyasu, R., Chang-Richards, A. (eds.): Strengthening Disaster Risk Governance to Manage Disaster Risk, Elsevier, 107−115.
15. ČESÁK, J., ŠOBR, M. (2005): Methods of bathymetric mapping of Czech lakes. Geografie, 110, 3, 141−151. <https://doi.org/10.37040/geografie2005110030141>
16. D’IGNAZIO, C. (2020): Art and Cartography. International Encyclopedia of Human Geography (Second Edition), 189−207.
17. DUMONT, J.F., SANTANA, E., VILEMA, W., PEDOJA, K., ORDÓÑEZ, M., CRUZ, M., JIMÉNEZ, N., ZAMBRANO, I. (2005): Morphological and microtectonic analysis of Quaternary deformation from Puná and Santa Clara Islands, Gulf of Guayaquil, Ecuador (South America). Tectonophysics, 399, 1−4, 331–350. <https://doi.org/10.1016/j.tecto.2004.12.029>
18. EASTMAN, J.R. (1985): Cognitive Models and Cartographic Design Research, The Cartographic Journal, 22, 2, 95−101. <https://doi.org/10.1179/caj.1985.22.2.95>
19. EBMEIER, S.K., ELLIOTT, J.R., NOCQUET, J.-M., BIGGS, J., MOTHES, P., JARRÍN, P., YÉPEZ, M., AGUAIZA, S., LUNDGREN, P., SAMSONOV, S.V. (2016): Shallow earthquake inhibits unrest near Chiles–Cerro Negro volcanoes, Ecuador–Colombian border. Earth and Planetary Science Letters, 450, 283−291. <https://doi.org/10.1016/j.epsl.2016.06.046>
20. FARR, T.G., ROSEN, P.A., CARO, E., CRIPPEN, R., DUREN, R., HENSLEY, S., KOBRICK, M., PALLER, M., RODRIGUEZ, E., ROTH, L., SEAL, D., SHAFFER, S., SHIMADA, J., UMLAND, J., WERNER, M., OSKIN, M., BURBANK, D., ALSDORF, D. (2007): The Shuttle Radar Topography Mission. Reviews of Geophysics, 45, 2, RG2004. <https://doi.org/10.1029/2005RG000183>
21. FONT, Y., SEGOVIA, M., VACA, S., THEUNISSEN, T. (2013): Seismicity patterns along the Ecuadorian subduction zone: new constraints from earthquake location in a 3-D a priori velocity model. Geophysical Journal International, 193, 1, 263−286. <https://doi.org/10.1093/gji/ggs083>
22. GAUGER, S., KUHN, G., GOHL, K., FEIGL, T., LEMENKOVA, P., HILLENBRAND, C. (2007): Swath-bathymetric mapping. Reports on Polar and Marine Research, 557, 38−45.
23. GORETTI, A., HUTT, C.M., HEDELUND, L. (2017): Post-earthquake safety evaluation of buildings in Portoviejo, Manabí province, following the Mw7.8 Ecuador earthquake of April 16, 2016. International Journal of Disaster Risk Reduction, 24, 271−283. <https://doi.org/10.1016/j.ijdrr.2017.06.011>
24. GOUVEA, G.M., NUCCI, J.C., LIBERTI, E. (2021): Cobertura da terra e qualidade ambiental da bacia hidrográfica do Córrego Vila Pinheiros, Curitiba, Paraná (Brasil). Caminhos de Geografia, 22, 80, 153−168. <https://doi.org/10.14393/RCG228054766>
25. GRANADOS, H.D., MIRANDA, P.J., NÚÑEZ, G.C., ALZATE, B.P., MOTHES, P., ROA, H.M., CORREA, B.E.C., RAMOS, J.C. (2021): Chapter 17 – Hazards at ice-clad volcanoes: Phenomena, processes, and examples from Mexico, Colombia, Ecuador, and Chile, Editor(s): Wilfried Haeberli, Colin Whiteman, Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition), Elsevier, 597−639.
26. GRIFFIN, A.L., WHITE, T., FISH, C., TOMIO, B., HUANG, H., SLUTER, C.R., BRAVO, J.V.M., FABRIKANT, S.I., BLEISCH, S., YAMADA, M., PICANÇO, P. (2017): Designing across map use contexts: a research agenda. International Journal of Cartography, 3, 1, 90−114. <https://doi.org/10.1080/23729333.2017.1315988>
27. HERNÁNDEZ, M.J., MICHAUD, F., COLLOT, J.-Y., PROUST, J.-N., D’ACREMONT, E. (2020): Evolution of the Ecuador offshore nonaccretionary-type forearc basin and margin segmentation. Tectonophysics, 781, 228374. <https://doi.org/10.1016/j.tecto.2020.228374>
28. HIND, S. (2020): Between capture and addition: The ontogenesis of cartographic calculation. Political Geography, 78, 102147. <https://doi.org/10.1016/j.polgeo.2020.102147>
29. HOSKINS, M.C., MELTZER, A., FONT, Y., AGURTO-DETZEL, H., VACA, S., ROLANDONE, F., NOCQUET, J.-M., SOTO-CORDERO, L., STACHNIK, J.C., BECK, S., LYNNER, C., RUIZ, M., ALVARADO, A., HERNANDEZ, S., CHARVIS, P., REGNIER, M., LEON-RIOS, S., RIETBROCK, A. (2021): Triggered crustal earthquake swarm across subduction segment boundary after the 2016 Pedernales, Ecuador megathrust earthquake. Earth and Planetary Science Letters, 553, 116620. <https://doi.org/10.1016/j.epsl.2020.116620>
30. HUGHES, R.A., PILATASIG, L.F. (2002): Cretaceous and Tertiary terrane accretion in the Cordillera Occidental of the Andes of Ecuador. Tectonophysics, 345, 1−4, 29–48. <https://doi.org/10.1016/S0040-1951(01)00205-0>
31. IRIS TRANSPORTABLE ARRAY (2003): USArray Transportable Array. International Federation of Digital Seismograph Networks.
32. JANSKÝ, B., ŠOBR, M., KOCUM, J., ČESÁK, J. (2005): New bathymetric mapping of the Bohemian Forest glacial lakes. Geografie, 110, 3, 176−187. <https://doi.org/10.37040/geografie2005110030176>
33. JENNY, B., HEITZLER, M., SINGH, D., FARMAKIS-SEREBRYAKOVA, M., LIU, J., HURNI, L. (2021): Cartographic Relief Shading with Neural Networks. IEEE Transactions on Visualization & Computer Graphics, 27, 1225−1235. <https://doi.org/10.1109/TVCG.2020.3030456>
34. JIMÉNEZ, C., SAAVEDRA, M.J., MORENO, N. (2021): Seismic source characteristics of the 2016 Pedernales-Ecuador earthquake (Mw 7.8). Physics of the Earth and Planetary Interiors, 312, 106670. <https://doi.org/10.1016/j.pepi.2021.106670>
35. KENNELLY, P.J. (2015): Complexities of designing terrain maps illustrated with horizontal hachures. International Journal of Cartography, 1, 2, 185−209. <https://doi.org/10.1080/23729333.2016.1158491>
36. KETTUNEN, P., KOSKI, C., OKSANEN, J. (2017): A design of contour generation for topographic maps with adaptive DEM smoothing. International Journal of Cartography, 3, 1, 19−30. <https://doi.org/10.1080/23729333.2017.1300998>
37. KONEČNÝ, M., VOŽENÍLEK, V. (1999): Trends in Cartography. Geografie, 104, 4, 221−230. <https://doi.org/10.37040/geografie1999104040221>
38. KLAUČO, M., GREGOROVÁ, B., STANKOV, U., MARKOVIĆ, V., LEMENKOVA, P. (2013): Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Open Geosciences, 5, 1, 28−42. <https://doi.org/10.2478/s13533-012-0120-0>
39. KLAUČO, M., GREGOROVÁ, B., KOLEDA, P., STANKOV, U., MARKOVIĆ, V., LEMENKOVA, P. (2017): Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal, 2, 16, 449−458. <https://doi.org/10.30638/eemj.2017.045>
40. LAVENU, A., WINTER, T., DÁVILA, F. (1995): A Pliocene–Quaternary compressional basin in the Interandean Depression, Central Ecuador. Geophysical Journal International, 121, 1, 279−300. <https://doi.org/10.1111/j.1365-246X.1995.tb03527.x>
41. LEGRAND, D., CALAHORRANO, A., GUILLIER, B., RIVERA, L., RUIZ, M., VILLAGÓMEZ, D., YEPES, H. (2002): Stress tensor analysis of the 1998−1999 tectonic swarm of northern Quito related to the volcanic swarm of Guagua Pichincha volcano, Ecuador. Tectonophysics, 344, 1–2, 15–36. <https://doi.org/10.1016/S0040-1951(01)00273-6>
42. LEMENKOV, V., LEMENKOVA, P. (2021a): Using TeX Markup Language for 3D and 2D Geological Plotting. Foundations of Computing and Decision Sciences, 46, 3, 43−69. <https://doi.org/10.2478/fcds-2021-0004>
43. LEMENKOV, V., LEMENKOVA, P. (2021b): Measuring Equivalent Cohesion Ceq of the Frozen Soils by Compression Strength Using Kriolab Equipment. Civil and Environmental Engineering Reports, 31, 2, 63−84. <https://doi.org/10.2478/ceer-2021-0020>
44. LEMENKOV, V., LEMENKOVA, P. (2021c): Testing Deformation and Compressive Strength of the Frozen Fine-Grained Soils With Changed Porosity and Density. Journal of Applied Engineering Sciences, 11, 2, 113−120. <https://doi.org/10.2478/jaes-2021-0015>
45. LEMENKOVA, P. (2019a): Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review, 51, 4, 181−194. <https://doi.org/10.2478/pcr-2019-0015>
46. LEMENKOVA, P. (2019b): Geophysical Modelling of the Middle America Trench using GMT. Annals of Valahia University of Targoviste. Geographical Series, 19, 2, 73−94.
47. LEMENKOVA, P. (2020a): Using GMT for 2D and 3D Modeling of the Ryukyu Trench Topography, Pacific Ocean. Miscellanea Geographica, 25, 4, 213−225. <https://doi.org/10.2478/mgrsd-2020-0038>
48. LEMENKOVA, P. (2020b): GRASS GIS for topographic and geophysical mapping of the Peru- Chile Trench. Forum Geografic, 19, 2, 143−157. <https://doi.org/10.5775/fg.2020.009.d>
49. LEMENKOVA, P. (2020c): Geomorphology of the Puerto Rico Trench and Cayman Trough in the Context of the Geological Evolution of the Caribbean Sea. Annales Universitatis Mariae Curie-Sklodowska, sectio B – Geographia, Geologia, Mineralogia et Petrographia, 75, 115−141.
50. LEMENKOVA, P. (2020d): Variations in the bathymetry and bottom morphology of the Izu- Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series, 18, 1, 41−60. <https://doi.org/10.2478/bgeo-2020-0004>
51. LEMENKOVA, P. (2021a): Topography of the Aleutian Trench south-east off Bowers Ridge, Bering Sea, in the context of the geological development of North Pacific Ocean. Baltica, 34, 1, 27−46. <https://doi.org/10.5200/baltica.2021.1.3>
52. LEMENKOVA, P. (2021b): Geodynamic setting of Scotia Sea and its effects on geomorphology of South Sandwich Trench, Southern Ocean. Polish Polar Research, 42, 1, 1−23.
53. LEMENKOVA, P. (2021c): Dataset compilation by GRASS GIS for thematic mapping of Antarctica: Topographic surface, ice thickness, subglacial bed elevation and sediment thickness. Czech Polar Reports 11, 1, 67−85. <https://doi.org/10.5817/CPR2021-1-6>
54. LEMENKOVA, P. (2021d): Geophysical Mapping of Ghana Using Advanced Cartographic Tool GMT. Kartografija i Geoinformacije, 20, 36, 16−37. <https://doi.org/10.32909/kg.20.36.2>
55. LEMENKOVA, P. (2021e). The visualization of geophysical and geomorphologic data from the area of Weddell Sea by the Generic Mapping Tools. Studia Quaternaria 38, 1, 19−32.
56. LEMENKOVA, P. (2022): Console-Based Mapping of Mongolia Using GMT Cartographic Scripting Toolset for Processing TerraClimate Data. Geosciences, 12, 3, 140. <https://doi.org/10.3390/geosciences12030140>
57. LINDH, P., LEMENKOVA, P. (2021a): Evaluation of Different Binder Combinations of Cement, Slag and CKD for S/S Treatment of TBT Contaminated Sediments. Acta Mechanica et Automatica, 15, 4, 236−248. <https://doi.org/10.2478/ama-2021-0030>
58. LINDH, P., LEMENKOVA, P. (2021b): Resonant Frequency Ultrasonic P-Waves for Evaluating Uniaxial Compressive Strength of the Stabilized Slag–Cement Sediments. Nordic Concrete Research, 65, 2, 39−62. <https://doi.org/10.2478/ncr-2021-0012>
59. OTTO, J.-C., GUSTAVSSON, M., GEILHAUSEN, M. (2011): Chapter Nine – Cartography: Design, Symbolisation and Visualisation of Geomorphological Maps. Developments in Earth Surface Processes 15, 253−295. <https://doi.org/10.1016/B978-0-444-53446-0.00009-4>
60. PAVLIS, N.K., HOLMES, S.A., KENYON, S.C., FACTOR, J.K. (2012): The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117, B04406. <https://doi.org/10.1029/2011JB008916>
61. PRATT, W.T., DUQUE, P., PONCE, M. (2005): An autochthonous geological model for the eastern Andes of Ecuador. Tectonophysics, 399, 1−4, 251–278. <https://doi.org/10.1016/j.tecto.2004.12.025>
62. PULIDO, N., YOSHIMOTO, M., SARABIA, A.M. (2020): Broadband wavelength slip model of the 1906 Ecuador-Colombia megathrust-earthquake based on seismic intensity and tsunami data. Tectonophysics, 774, 228226. <https://doi.org/10.1016/j.tecto.2019.228226>
63. QGIS.org (2021): QGIS Geographic Information System. QGIS Association, http://www.qgis.org.
64. RAPOSO, P. (2020): Variable DEM generalization using local entropy for terrain representation through scale. International Journal of Cartography, 6, 1, 99−120. <https://doi.org/10.1080/23729333.2019.1687973>
65. REDDY, Y.S., KUMAR, A., PANDEY, O.J., CENKERAMADDI, L.R. (2022): Spectrum cartography techniques, challenges, opportunities, and applications: A survey. Pervasive and Mobile Computing 79, 101511. <https://doi.org/10.1016/j.pmcj.2021.101511>
66. REYNAUD, C., JAILLARD, É., LAPIERRE, H., MAMBERTI, M., MASCLE, G.H. (1999): Oceanic plateau and island arcs of southwestern Ecuador: their place in the geodynamic evolution of northwestern South America. Tectonophysics, 307, 3−4, 235–254. <https://doi.org/10.1016/S0040-1951(99)00099-2>
67. ROBINSON, A.C., DEMŠAR, U., MOORE, A.B., BUCKLEY, A., JIANG, B., FIELD, K., KRAAK, M.-J., CAMBOIM, S.P., SLUTER, C.R. (2017): Geospatial big data and cartography: research challenges and opportunities for making maps that matter. International Journal of Cartography, 3, 1, 32−60. <https://doi.org/10.1080/23729333.2016.1278151>
68. SANDWELL, D.T., MÜLLER, R.D., SMITH, W.H.F., GARCIA, E., FRANCIS, R. (2014): New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 7346, 6205, 65−67. <https://doi.org/10.1126/science.1258213>
69. SARHADI, A., SOLTANI, S., MODARRES, R. (2012): Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis. Journal of Hydrology, 458−459, 21, 68–86. <https://doi.org/10.1016/j.jhydrol.2012.06.039>
70. SCHENK, C.J., VIGER, R.J., ANDERSON, C.P. (1998): Maps showing geology, oil and gas fields, and geologic provinces of the South America region. U.S. Geological Survey Open-File Report 97−470D, 12.
71. SCHENKE, H. (2016): General Bathymetric Chart of the Oceans (GEBCO). In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds): Encyclopedia of Marine Geosciences. Encyclopedia of Earth Sciences Series. Springer, Dordrecht.
72. SCHENKE, H.W., LEMENKOVA, P. (2008): Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 81, 16−21.
73. SCHUSTER, R.L., NIETO, A.S., O’ROURKE, T.D., CRESPO, E., PLAZA-NIETO, G. (1996): Mass wasting triggered by the 5 March 1987 Ecuador earthquakes. Engineering Geology, 42, 1, 1−23. <https://doi.org/10.1016/0013-7952(95)00024-0>
74. SCHÜTTE, P., CHIARADIA, M., BEATE, B. (2010): Geodynamic controls on Tertiary arc magmatism in Ecuador: Constraints from U–Pb zircon geochronology of Oligocene–Miocene intrusions and regional age distribution trends. Tectonophysics, 489, 1−4, 159–176. <https://doi.org/10.1016/j.tecto.2010.04.015>
75. SEVILLA, J.H. (1992): Example of big landslides in Ecuador (In French). Proc 6th International Congress International Association of Engineering Geology, Amsterdam, 6−10 August 1990V3, P1713–1717. Publ Rotterdam: A A Balkema, 1990. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 29, 3, A191.
76. SIWEK, T., KAŇOK, J. (2000): Mapping Silesian Identity in Czechia. Geografie, 105, 2, 190−200. <https://doi.org/10.37040/geografie2000105020190>
77. SORIANO, G., ESPINOZA, T., VILLANUEVA, R., GONZALEZ, I., MONTERO, A., CORNEJO, M., LOPEZ, K. (2017): Thermal geological model of the city of Guayaquil, Ecuador. Geothermics, 66, 101−109. <https://doi.org/10.1016/j.geothermics.2016.11.003>
78. SPIKINGS, R., PAUL, A., VALLEJO, C., REYES, P. (2021): Constraints on the ages of the crystalline basement and Palaeozoic cover exposed in the Cordillera real, Ecuador: 40Ar/39Ar analyses and detrital zircon U/Pb geochronology. Gondwana Research, 90, 77−101. <https://doi.org/10.1016/j.gr.2020.10.009>
79. SUETOVA, I.A., USHAKOVA, L.A., LEMENKOVA, P. (2005): Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4, 138−142.
80. VACA, S., VALLÉE, M., NOCQUET, J.-M., BATTAGLIA, J., RÉGNIER, M. (2018): Recurrent slow slip events as a barrier to the northward rupture propagation of the 2016 Pedernales earthquake (Central Ecuador). Tectonophysics, 724−725, 80–92. <https://doi.org/10.1016/j.tecto.2017.12.012>
81. VALLEJO, C., ROMERO, C., HORTON, B.K., SPIKINGS, R.A., GAIBOR, J., WINKLER, W., ESTEBAN, J.J., THOMSEN, T.B., MARIÑO, E. (2021): Jurassic to Early Paleogene sedimentation in the Amazon region of Ecuador: Implications for the paleogeographic evolution of northwestern South America. Global and Planetary Change, 103555.
82. VILLACRESES, G., GAONA, G., MARTÍNEZ-GÓMEZ, J., JUAN JIJÓN, D. (2017): Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador. Renewable Energy, 109, 275−286. <https://doi.org/10.1016/j.renene.2017.03.041>
83. VOŽENÍLEK, V. (1999): Cartographical Tools of Geographical Information Systems. Geografie, 104, 4, 231−242. <https://doi.org/10.37040/geografie1999104040231>
84. WANG, H., ZHU, J. (2011): Interactive Cartographic Drawing within the RIA/Silverlight Environment. in Digital Media and Digital Content Management, Hangzhou, Zhejiang China, 292−297.
85. WESSEL, P., LUIS, J.F., UIEDA, L., SCHARROO, R., WOBBE, F., SMITH, W.H.F., TIAN, D. (2019): The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20, 5556−5564. <https://doi.org/10.1029/2019GC008515>
86. WESSON, C. (2007): Cartographic Design, Quality and Consultancy at Ordnance Survey. The Cartographic Journal, 44, 3, 209−215. <https://doi.org/10.1179/000870407X241728>
87. XIAO, N., ARMSTRONG, M.P. (2012): Towards a Multiobjective View of Cartographic Design. Cartography and Geographic Information Science, 39, 2, 76−87. <https://doi.org/10.1559/1523040639276>
88. YAMANAKA, Y., TANIOKA, Y. (2018): Large amplification of the 1906 Colombia–Ecuador earthquake tsunami in Hilo Bay induced by bay-scale resonance. Geophysical Journal International, 214, 3, 1937−1946. <https://doi.org/10.1093/gji/ggy244>
89. YOUSEFI, S., AVAND, M., YARIYAN, P., POURGHASEMI, H.R., KEESSTRA, S., TAVANGAR, S., TABIBIAN, S. (2020): A novel GIS-based ensemble technique for rangeland downward trend mapping as an ecological indicator change. Ecological Indicators, 117, 106591. <https://doi.org/10.1016/j.ecolind.2020.106591>
90. ZÁLEŠÁKOVÁ, D. (1995): Methods of Cartographical Representation of Groundwater Regionalization. Geografie, 100, 1, 10−15. <https://doi.org/10.37040/geografie1995100010010>
91. ZOU, Q., WANG, Q., WANG, C. (2012). Integrated Cartography Technique Based on GIS. Energy Procedia 17, Part A, 663−670. <https://doi.org/10.1016/j.egypro.2012.02.152>
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive