Geografie 2022, 127, 127-144

https://doi.org/10.37040/geografie.2022.004

Exploring the daily mobility rhythms in an urban environment: using the data from intelligent transport systems

Stanislav Kraft1ID, Vojtěch Blažek1ID, Miroslav Marada2ID

1University of South Bohemia, Faculty of Education, Department of Geography, České Budějovice, Czechia
2Charles University, Faculty of Science, Department of Social Geography and Regional Development, Prague, Czechia

Received November 2021
Accepted February 2022

References

1. AHAS, R., AASA, A., SILM, S., TIRU, M. (2010): Daily rhythms of suburban commuters’ movements in the Tallinn metropolitan area: Case study with mobile positioning data. Transportation Research Part C: Emerging Technologies, 18, 1, 45−54. <https://doi.org/10.1016/j.trc.2009.04.011>
2. AMBAK, K., ATIQ, R., ISMAIL, R. (2009): Intelligent transport system for motorcycle safety and issues. European Journal of Scientific Research, 28, 4, 600−611.
3. ARIMURA, M., VIN HA, T., OKUMURA, K., ASADA, T. (2020): Changes in urban mobility in Sapporo city, Japan due to the Covid-19 emergency declarations. Transportation Research Interdisciplinary Perspectives.
4. AXHAUSEN, K.W., ZIMMERMANN, A., SCHÖNFELDER, S., RINDSFÜSER, G., HAUPT, T. (2002): Observing the rhythms of daily life: A six-week travel diary. Transportation, 29, 95−124. <https://doi.org/10.1023/A:1014247822322>
5. BOROWSKA-STEFANSKA, M., KOWALSKI, M., WISNIEWSKI, S. (2020). Changes in urban transport behaviours and spatial mobility resulting from the introduction of statutory Sunday retail restrictions: A case study of Lodz, Poland. Moravian Geographical Reports, 28, 1, 29−47. <https://doi.org/10.2478/mgr-2020-0003>
6. CALABRESE, F., DIAO, M., LORENZO, G.D., FERREIRA, J., RATTI, C. (2013): Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation Research Part C: Emerging Technologies, 26, 301−313. <https://doi.org/10.1016/j.trc.2012.09.009>
7. COHEN, S., CHRISTOFOROU, Z. (2015): Travel Time Estimation Between Loop Detectors and Fcd: A Compatibility Study on the Lille Network, France. Transportation Research Procedia, 10, 245−255. <https://doi.org/10.1016/j.trpro.2015.09.074>
8. EDENSOR, T. (2011): Commuter: Mobility, Rhythm and Commuting. In: Cresswell, T., Merriman, P. (eds.): Geographies of Mobilities: Practices, Spaces, Subjects. Routledge, London, 189−204.
9. ELLEGARD, K., VILHELMSON, B. (2004). Home as a Pocket of Local Order: Everyday Activities and The Friction of Distance. Geografiska Annaler: Series B, Human Geography, 86, 4, 281−296. <https://doi.org/10.1111/j.0435-3684.2004.00168.x>
10. FEKIH, M., BELLEMANS, T., SMOREDA, Z., BONNEL, P., FURNO, A., GALLAND, S. (2020): A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France). Transportation.
11. FURMANKIEWICZ, M., BURYLO, K., DOLZBLASZ S. (2020): From service areas to empty transport corridors? The impact of border openings on service and retail facilities at Polish-Czech border crossings. Moravian Geographical Reports, 28, 2, 136−151. <https://doi.org/10.2478/mgr-2020-0011>
12. GENTILE, G., NOEKEL, K. (2016): Modelling public transport passenger flows in the era of intelligent transport systems. Springer.
13. GONZÁLEZ, M.C., HIDALGO, C.A, BARABÁSI A. (2008): Understanding individual human mobility patterns. Nature, 453, 779−782. <https://doi.org/10.1038/nature06958>
14. JUAN, Z., WU, J., McDONALD, M. (2006): Socio-economic impact assessment of intelligent transport systems. Tsinghua Science & Technology, 11, 3, 339−350. <https://doi.org/10.1016/S1007-0214(06)70198-5>
15. KANG, C., LIU, Y., MA, X., WU, L. (2012): Towards Estimating Urban Population Distributions from Mobile Call Data. Journal of Urban Technology, 19, 4, 3−21. <https://doi.org/10.1080/10630732.2012.715479>
16. KÄRRHOLM, M. (2009): To the rhythm of shopping – on synchronisation in urban landscapes of consumption. Social & Cultural Geography, 10, 4, 421−440. <https://doi.org/10.1080/14649360902853254>
17. KAPARIAS, I., EDEN, N., TSAKARESTOS, A., GAL-TZUR, A., GERSTENBERGER, M., HOADLEY, S., LEFEBVRE, LEDOUX, J., BELL, M. (2012): Development and Application of an Evaluation Framework for Urban Traffic Management and Intelligent Transport Systems. Procedia – Social and Behavioral Sciences, 48, 3102−3112. <https://doi.org/10.1016/j.sbspro.2012.06.1276>
18. KITCHIN, R. (2013): Big data and human geography: Opportunities, challenges and risks. Dialogues in Human Geography, 3, 262−267. <https://doi.org/10.1177/2043820613513388>
19. KRAFT, S., KVĚTOŇ, T., BLAŽEK, V., POJSL, L., RYPL, J. (2020): Travel diaries, GPS loggers and Smartphone applications in mapping the daily mobility patterns of students in an urban environment. Moravian Geographical Reports, 28, 4, 259−268. <https://doi.org/10.2478/mgr-2020-0019>
20. KRYGSMAN, S., DE JONG, T. (2007): Capturing daily urban rhythms: the use of location aware technologies. Computers in urban planning and urban management, 10th International Conference; Iguassu Falls, Brazil, 11−14.
21. KWAN, M.P., SCHWANEN, T. (2016): Geographies of Mobility. Annals of the American Association of Geographers, 106, 2, 243−256.
22. LEFEVBRE, H. (2004). Rhythmanalysis: Space, time and everyday life. Continuum, London.
23. LI, L., QU, X., ZHANG, J., WANG, Y., RAN, B. (2019): Traffic speed prediction for intelligent transportation system based on a deep feature fusion model. Journal of Intelligent Transportation Systems, 23, 6, 605−616. <https://doi.org/10.1080/15472450.2019.1583965>
24. MAREGGI, M. (2013): Urban Rhythms in the Contemporary City. In: Henckel, D., Thomaier, S., Könecke, B., Zedda, R., Stabilini, S. (eds.): Space–Time Design of the Public City. Springer, Heidelberg, 3−20.
25. MAZARÉ, P.E., TOSSAVAINEN, O.P., BAYEN, A.M., WORK, D.B. (2012): Trade-offs between inductive loops and GPS probe vehicles for travel time estimation: A Mobile Century case study. TRB 2012 Annual Meeting, 1−20.
26. MEIYING, J., HAINANA, L., LED, N. (2015): The Evaluation Studies of Regional Transportation Accessibility Based on Intelligent Transportation System: Take the Example in Yunnan Province of China. International Conference on Intelligent Transportation, Big Data and Smart City, Halong Bay, 862−865.
27. MULÍČEK, O., OSMAN, R., SEIDENGLANZ, D. (2016): Time–space rhythms of the city – The industrial and postindustrial Brno. Environment and Planning A: Economy and Space, 48, 1, 115−131. <https://doi.org/10.1177/0308518X15594809>
28. MULÍČEK, O., OSMAN, R. (2018). Rhythm of urban retail landscapes: Shopping hours and the urban chronotopes. Moravian Geographical Reports, 26, 1, 2−13. <https://doi.org/10.2478/mgr-2018-0001>
29. NEMEŠKAL, J., OUŘEDNÍČEK, M., POSPÍŠILOVÁ, L. (2020): Temporality of urban space: daily rhythms of a typical week day in the Prague metropolitan area. Journal of Maps, 16, 1, 30−39. <https://doi.org/10.1080/17445647.2019.1709577>
30. NOULAS, A., SCELLATO, S., LAMBIOTTE, R., PONTIL, M., MASCOLO, C. (2012): A Tale of Many Cities: Universal Patterns in Human Urban Mobility. PLoS One, 7, 5, e37027. <https://doi.org/10.1371/journal.pone.0037027>
31. NOVÁK, J., SÝKORA, L. (2007): A city in motion: time‐space activity and mobility patterns of suburban inhabitants and the structuration of the spatial organization of the Prague metropolitan area. Geografiska Annaler: Series B, Human Geography, 89, 2, 147−168. <https://doi.org/10.1111/j.1468-0467.2007.00245.x>
32. NUZZOLO, A., COMI, A. (2016): Advanced public transport and intelligent transport systems: new modelling challenges. Transportmetrica A: Transport Science, 12, 8, 674−699. <https://doi.org/10.1080/23249935.2016.1166158>
33. OAKIL, A., NIJLAND, L., DIJST, M. (2016): Rush hour commuting in the Netherlands: Genderspecific household activities and personal attitudes towards responsibility sharing. Travel Behaviour and Society, 4, 79−87. <https://doi.org/10.1016/j.tbs.2015.10.003>
34. OSKARBSKI, J., BIRR, K., MISZEWSKI, M., ŻARSKI, K. (2015): Estimating the average speed of public transport vehicles based on traffic control system data. International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Budapest, 287−293.
35. OSMAN, R., IRA, V., TROJAN, J. (2020): A tale of two cities: The comparative chrono-urbanism of Brno and Bratislava public transport systems. Moravian Geographical Reports, 28, 4, 269−282. <https://doi.org/10.2478/mgr-2020-0020>
36. OUŘEDNÍČEK, M., NEMEŠKAL, J., ŠPAČKOVÁ, P., HAMPL, M., NOVÁK, J. (2018): A synthetic approach to the delimitation of the Prague Metropolitan Area. Journal of Maps, 14, 1, 26−33. <https://doi.org/10.1080/17445647.2017.1422446>
37. QURESHI, K.N., ABDULLAH, A.H. (2013): A survey on intelligent transportation systems. Middle-East Journal of Scientific Research, 15, 5, 629−642.
38. PAIVA, D., CACHINHO, H., BARARTA-SALGUEIRO, T. (2017): The pace of life and temporal resources in a neighborhood of an edge city. Time & Society, 26, 1, 28−51. <https://doi.org/10.1177/0961463X15596704>
39. ROY, K.M., TUBBS, C.Y., BURTON, L.M. (2005): Don’t have no time: Daily rhythms and the organization of time for low‐income families. Family Relations, 53, 2, 168−178. <https://doi.org/10.1111/j.0022-2445.2004.00007.x>
40. SCHNEIDER, C., BELIK, V., COURONNÉ, T., SMOREDA, Z., GONZÁLEZ, M. (2013): Unravelling daily human mobility motifs. Journal of the Royal Society Interface, 84, 10.
41. SCHÖNFELDER, S., AXHAUSEN, K.W. (2016): Urban Rhythms and Travel Behaviour. Spatial and Temporal Phenomena of Daily Travel. Routledge, New York.
42. SMITH, R.J., HETHERINGTON, K. (2013): Urban Rhythms: Mobilities, Space and Interaction in the Contemporary City. The Sociological Review, 61, 1, 4−16. <https://doi.org/10.1111/1467-954X.12050>
43. STEENBRUGGEN, J., TRANOS, E., NIJKAMP, P. (2015): Data from mobile phone operators: A tool for smarter cities? Telecommunications Policy, 39, 3−4, 335–346. <https://doi.org/10.1016/j.telpol.2014.04.001>
44. SUN, Y., TARIGAN, A., WAYGOOD, O., WANG, D. (2017): Diversity in diversification: an analysis of shopping trips in six-week travel diary data. Journal of Zhejiang University-SCIENCE A, 18, 3, 234−244. <https://doi.org/10.1631/jzus.A1500198>
45. SÝKORA, L., MULÍČEK, O. (2009): The micro-regional nature of functional urban areas (FUAs): lessons from the analysis of Czech urban and regional system. Urban Research & Practice, 2, 3, 287−307. <https://doi.org/10.1080/17535060903319228>
46. ŠVEDA, M., SLÁDEKOVÁ MADAJOVÁ, M., BARLÍK, P., KRIŽAN, F., ŠUŠKA, P. (2020): Mobile phone data in studying urban rhythms: Towards an analytical framework. Moravian Geographical Reports, 28, 4, 248−258. <https://doi.org/10.2478/mgr-2020-0018>
47. TAYLOR, Z., JÓZEFOWICZ, I. (2012): Intra-urban daily mobility of disabled people for recreational and leisure purposes. Journal of Transport Geography, 24, 155−172. <https://doi.org/10.1016/j.jtrangeo.2011.12.008>
48. THOMAS, T., WEIJERMARS, W., VAN BERKUM, E. (2008): Variations in urban traffic volumes. European Journal of Transport and Infrastructure Research, 8, 3, 251−263.
49. VANAJAKSHI, L., SUBRAMANIAN, S.C., SIVANANDAN, R. (2009): Travel time prediction under heterogeneous traffic conditions using global positioning system data from buses. IET Intelligent Transport Systems, 3, 1, 1−9. <https://doi.org/10.1049/iet-its:20080013>
50. WEBER, J., KWAN, M.P. (2002): Bringing time back in: A study on the influence of travel time variations and facility opening hours on individual accessibility. The Professional Geographer, 54, 2, 226−240. <https://doi.org/10.1111/0033-0124.00328>
51. ZHANG, J., WANG, F.Y., WANG, K., LIN, W.H., XU, X., CHEN, C. (2011): Data-driven intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 12, 4, 1624−1639. <https://doi.org/10.1109/TITS.2011.2158001>
52. ZHU, L., YU, F.R., WANG, Y., NING, B., TANG, T. (2018): Big data analytics in intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 20, 1, 383−398. <https://doi.org/10.1109/TITS.2018.2815678>
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive