Geografie 2022, 127, 127-144
https://doi.org/10.37040/geografie.2022.004
Exploring the daily mobility rhythms in an urban environment: using the data from intelligent transport systems
References
1. 2010): Daily rhythms of suburban commuters’ movements in the Tallinn metropolitan area: Case study with mobile positioning data. Transportation Research Part C: Emerging Technologies, 18, 1, 45−54.
< , R., AASA, A., SILM, S., TIRU, M. (https://doi.org/10.1016/j.trc.2009.04.011>
2. 2009): Intelligent transport system for motorcycle safety and issues. European Journal of Scientific Research, 28, 4, 600−611.
, K., ATIQ, R., ISMAIL, R. (
3. ARIMURA, M., VIN HA, T., OKUMURA, K., ASADA, T. (2020): Changes in urban mobility in Sapporo city, Japan due to the Covid-19 emergency declarations. Transportation Research Interdisciplinary Perspectives.
4. 2002): Observing the rhythms of daily life: A six-week travel diary. Transportation, 29, 95−124.
< , K.W., ZIMMERMANN, A., SCHÖNFELDER, S., RINDSFÜSER, G., HAUPT, T. (https://doi.org/10.1023/A:1014247822322>
5. 2020). Changes in urban transport behaviours and spatial mobility resulting from the introduction of statutory Sunday retail restrictions: A case study of Lodz, Poland. Moravian Geographical Reports, 28, 1, 29−47.
< , M., KOWALSKI, M., WISNIEWSKI, S. (https://doi.org/10.2478/mgr-2020-0003>
6. 2013): Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation Research Part C: Emerging Technologies, 26, 301−313.
< , F., DIAO, M., LORENZO, G.D., FERREIRA, J., RATTI, C. (https://doi.org/10.1016/j.trc.2012.09.009>
7. 2015): Travel Time Estimation Between Loop Detectors and Fcd: A Compatibility Study on the Lille Network, France. Transportation Research Procedia, 10, 245−255.
< , S., CHRISTOFOROU, Z. (https://doi.org/10.1016/j.trpro.2015.09.074>
8. EDENSOR, T. (2011): Commuter: Mobility, Rhythm and Commuting. In: Cresswell, T., Merriman, P. (eds.): Geographies of Mobilities: Practices, Spaces, Subjects. Routledge, London, 189−204.
9. 2004). Home as a Pocket of Local Order: Everyday Activities and The Friction of Distance. Geografiska Annaler: Series B, Human Geography, 86, 4, 281−296.
< , K., VILHELMSON, B. (https://doi.org/10.1111/j.0435-3684.2004.00168.x>
10. FEKIH, M., BELLEMANS, T., SMOREDA, Z., BONNEL, P., FURNO, A., GALLAND, S. (2020): A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France). Transportation.
11. 2020): From service areas to empty transport corridors? The impact of border openings on service and retail facilities at Polish-Czech border crossings. Moravian Geographical Reports, 28, 2, 136−151.
< , M., BURYLO, K., DOLZBLASZ S. (https://doi.org/10.2478/mgr-2020-0011>
12. GENTILE, G., NOEKEL, K. (2016): Modelling public transport passenger flows in the era of intelligent transport systems. Springer.
13. 2008): Understanding individual human mobility patterns. Nature, 453, 779−782.
< , M.C., HIDALGO, C.A, BARABÁSI A. (https://doi.org/10.1038/nature06958>
14. 2006): Socio-economic impact assessment of intelligent transport systems. Tsinghua Science & Technology, 11, 3, 339−350.
< , Z., WU, J., McDONALD, M. (https://doi.org/10.1016/S1007-0214(06)70198-5>
15. 2012): Towards Estimating Urban Population Distributions from Mobile Call Data. Journal of Urban Technology, 19, 4, 3−21.
< , C., LIU, Y., MA, X., WU, L. (https://doi.org/10.1080/10630732.2012.715479>
16. 2009): To the rhythm of shopping – on synchronisation in urban landscapes of consumption. Social & Cultural Geography, 10, 4, 421−440.
< , M. (https://doi.org/10.1080/14649360902853254>
17. 2012): Development and Application of an Evaluation Framework for Urban Traffic Management and Intelligent Transport Systems. Procedia – Social and Behavioral Sciences, 48, 3102−3112.
< , I., EDEN, N., TSAKARESTOS, A., GAL-TZUR, A., GERSTENBERGER, M., HOADLEY, S., LEFEBVRE, LEDOUX, J., BELL, M. (https://doi.org/10.1016/j.sbspro.2012.06.1276>
18. 2013): Big data and human geography: Opportunities, challenges and risks. Dialogues in Human Geography, 3, 262−267.
< , R. (https://doi.org/10.1177/2043820613513388>
19. 2020): Travel diaries, GPS loggers and Smartphone applications in mapping the daily mobility patterns of students in an urban environment. Moravian Geographical Reports, 28, 4, 259−268.
< , S., KVĚTOŇ, T., BLAŽEK, V., POJSL, L., RYPL, J. (https://doi.org/10.2478/mgr-2020-0019>
20. KRYGSMAN, S., DE JONG, T. (2007): Capturing daily urban rhythms: the use of location aware technologies. Computers in urban planning and urban management, 10th International Conference; Iguassu Falls, Brazil, 11−14.
21. 2016): Geographies of Mobility. Annals of the American Association of Geographers, 106, 2, 243−256.
, M.P., SCHWANEN, T. (
22. LEFEVBRE, H. (2004). Rhythmanalysis: Space, time and everyday life. Continuum, London.
23. 2019): Traffic speed prediction for intelligent transportation system based on a deep feature fusion model. Journal of Intelligent Transportation Systems, 23, 6, 605−616.
< , L., QU, X., ZHANG, J., WANG, Y., RAN, B. (https://doi.org/10.1080/15472450.2019.1583965>
24. MAREGGI, M. (2013): Urban Rhythms in the Contemporary City. In: Henckel, D., Thomaier, S., Könecke, B., Zedda, R., Stabilini, S. (eds.): Space–Time Design of the Public City. Springer, Heidelberg, 3−20.
25. MAZARÉ, P.E., TOSSAVAINEN, O.P., BAYEN, A.M., WORK, D.B. (2012): Trade-offs between inductive loops and GPS probe vehicles for travel time estimation: A Mobile Century case study. TRB 2012 Annual Meeting, 1−20.
26. MEIYING, J., HAINANA, L., LED, N. (2015): The Evaluation Studies of Regional Transportation Accessibility Based on Intelligent Transportation System: Take the Example in Yunnan Province of China. International Conference on Intelligent Transportation, Big Data and Smart City, Halong Bay, 862−865.
27. 2016): Time–space rhythms of the city – The industrial and postindustrial Brno. Environment and Planning A: Economy and Space, 48, 1, 115−131.
< , O., OSMAN, R., SEIDENGLANZ, D. (https://doi.org/10.1177/0308518X15594809>
28. 2018). Rhythm of urban retail landscapes: Shopping hours and the urban chronotopes. Moravian Geographical Reports, 26, 1, 2−13.
< , O., OSMAN, R. (https://doi.org/10.2478/mgr-2018-0001>
29. 2020): Temporality of urban space: daily rhythms of a typical week day in the Prague metropolitan area. Journal of Maps, 16, 1, 30−39.
< , J., OUŘEDNÍČEK, M., POSPÍŠILOVÁ, L. (https://doi.org/10.1080/17445647.2019.1709577>
30. 2012): A Tale of Many Cities: Universal Patterns in Human Urban Mobility. PLoS One, 7, 5, e37027.
< , A., SCELLATO, S., LAMBIOTTE, R., PONTIL, M., MASCOLO, C. (https://doi.org/10.1371/journal.pone.0037027>
31. 2007): A city in motion: time‐space activity and mobility patterns of suburban inhabitants and the structuration of the spatial organization of the Prague metropolitan area. Geografiska Annaler: Series B, Human Geography, 89, 2, 147−168.
< , J., SÝKORA, L. (https://doi.org/10.1111/j.1468-0467.2007.00245.x>
32. 2016): Advanced public transport and intelligent transport systems: new modelling challenges. Transportmetrica A: Transport Science, 12, 8, 674−699.
< , A., COMI, A. (https://doi.org/10.1080/23249935.2016.1166158>
33. 2016): Rush hour commuting in the Netherlands: Genderspecific household activities and personal attitudes towards responsibility sharing. Travel Behaviour and Society, 4, 79−87.
< , A., NIJLAND, L., DIJST, M. (https://doi.org/10.1016/j.tbs.2015.10.003>
34. OSKARBSKI, J., BIRR, K., MISZEWSKI, M., ŻARSKI, K. (2015): Estimating the average speed of public transport vehicles based on traffic control system data. International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Budapest, 287−293.
35. 2020): A tale of two cities: The comparative chrono-urbanism of Brno and Bratislava public transport systems. Moravian Geographical Reports, 28, 4, 269−282.
< , R., IRA, V., TROJAN, J. (https://doi.org/10.2478/mgr-2020-0020>
36. 2018): A synthetic approach to the delimitation of the Prague Metropolitan Area. Journal of Maps, 14, 1, 26−33.
< , M., NEMEŠKAL, J., ŠPAČKOVÁ, P., HAMPL, M., NOVÁK, J. (https://doi.org/10.1080/17445647.2017.1422446>
37. 2013): A survey on intelligent transportation systems. Middle-East Journal of Scientific Research, 15, 5, 629−642.
, K.N., ABDULLAH, A.H. (
38. 2017): The pace of life and temporal resources in a neighborhood of an edge city. Time & Society, 26, 1, 28−51.
< , D., CACHINHO, H., BARARTA-SALGUEIRO, T. (https://doi.org/10.1177/0961463X15596704>
39. 2005): Don’t have no time: Daily rhythms and the organization of time for low‐income families. Family Relations, 53, 2, 168−178.
< , K.M., TUBBS, C.Y., BURTON, L.M. (https://doi.org/10.1111/j.0022-2445.2004.00007.x>
40. 2013): Unravelling daily human mobility motifs. Journal of the Royal Society Interface, 84, 10.
, C., BELIK, V., COURONNÉ, T., SMOREDA, Z., GONZÁLEZ, M. (
41. SCHÖNFELDER, S., AXHAUSEN, K.W. (2016): Urban Rhythms and Travel Behaviour. Spatial and Temporal Phenomena of Daily Travel. Routledge, New York.
42. 2013): Urban Rhythms: Mobilities, Space and Interaction in the Contemporary City. The Sociological Review, 61, 1, 4−16.
< , R.J., HETHERINGTON, K. (https://doi.org/10.1111/1467-954X.12050>
43. 2015): Data from mobile phone operators: A tool for smarter cities? Telecommunications Policy, 39, 3−4, 335–346.
< , J., TRANOS, E., NIJKAMP, P. (https://doi.org/10.1016/j.telpol.2014.04.001>
44. 2017): Diversity in diversification: an analysis of shopping trips in six-week travel diary data. Journal of Zhejiang University-SCIENCE A, 18, 3, 234−244.
< , Y., TARIGAN, A., WAYGOOD, O., WANG, D. (https://doi.org/10.1631/jzus.A1500198>
45. 2009): The micro-regional nature of functional urban areas (FUAs): lessons from the analysis of Czech urban and regional system. Urban Research & Practice, 2, 3, 287−307.
< , L., MULÍČEK, O. (https://doi.org/10.1080/17535060903319228>
46. 2020): Mobile phone data in studying urban rhythms: Towards an analytical framework. Moravian Geographical Reports, 28, 4, 248−258.
< , M., SLÁDEKOVÁ MADAJOVÁ, M., BARLÍK, P., KRIŽAN, F., ŠUŠKA, P. (https://doi.org/10.2478/mgr-2020-0018>
47. 2012): Intra-urban daily mobility of disabled people for recreational and leisure purposes. Journal of Transport Geography, 24, 155−172.
< , Z., JÓZEFOWICZ, I. (https://doi.org/10.1016/j.jtrangeo.2011.12.008>
48. 2008): Variations in urban traffic volumes. European Journal of Transport and Infrastructure Research, 8, 3, 251−263.
, T., WEIJERMARS, W., VAN BERKUM, E. (
49. 2009): Travel time prediction under heterogeneous traffic conditions using global positioning system data from buses. IET Intelligent Transport Systems, 3, 1, 1−9.
< , L., SUBRAMANIAN, S.C., SIVANANDAN, R. (https://doi.org/10.1049/iet-its:20080013>
50. 2002): Bringing time back in: A study on the influence of travel time variations and facility opening hours on individual accessibility. The Professional Geographer, 54, 2, 226−240.
< , J., KWAN, M.P. (https://doi.org/10.1111/0033-0124.00328>
51. 2011): Data-driven intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 12, 4, 1624−1639.
< , J., WANG, F.Y., WANG, K., LIN, W.H., XU, X., CHEN, C. (https://doi.org/10.1109/TITS.2011.2158001>
52. 2018): Big data analytics in intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 20, 1, 383−398.
< , L., YU, F.R., WANG, Y., NING, B., TANG, T. (https://doi.org/10.1109/TITS.2018.2815678>