Geografie 2020, 125, 171-209

https://doi.org/10.37040/geografie2020125020171

COVID-19 data sources: evaluation of map applications and analysis of behavior changes in Europe’s population

Vít Pászto1,2ID, Jaroslav Burian1,2ID, Karel Macků2ID

1Moravian Business College Olomouc, Department of Informatics and Applied Mathematics, Olomouc, Czechia
2Palacký University in Olomouc, Faculty of Science, Department of Geoinformatics, Olomouc, Czechia

Received April 2020
Accepted May 2020

References

1. ANDRIENKO, G., ANDRIENKO, N., JANKOWSKI, P., KEIM, D., KRAAK, M.J., MAC EACHREN, A., WROBEL, S. (2007): Geovisual analytics for spatial decision support: Setting the research agenda. International Journal of Geographical Information Science 21, 8, 839–857. <https://doi.org/10.1080/13658810701349011>
2. Apple Inc. (2020): Apple and Google partner on COVID-19 contact tracing technology, https://www.apple.com/cz/newsroom/2020/04/apple-and-google-partner-on-covid-19-contact-tracing-technology/ (8.5.2020).
3. BATTY, M. (2013): Big data, smart cities and city planning. Dialogues in Human Geography, 3, 3, 274–279. <https://doi.org/10.1177/2043820613513390>
4. BATTY, M. (2016): Big data and the city. Built Environment, 42, 3, 321–337. <https://doi.org/10.2148/benv.42.3.321>
5. CALABRESE, F., DIAO, M., DI LORENZO, G., FERREIRA, J., RATTI, C. (2013): Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation Research Part C: Emerging Technologies, 26, 301–313. <https://doi.org/10.1016/j.trc.2012.09.009>
6. CALIŃSKI, T., HARABASZ, J. (1974): A dendrite method for cluster analysis. Communications in Statistics-theory and Methods, 3, 1, 1–27. <https://doi.org/10.1080/03610927408827101>
7. CARROLL, M.W., MATTHEWS, D.A., HISCOX, J.A., ELMORE, M.J., POLLAKIS, G., RAMBAUT, A., ABDELLATI, S. (2015): Temporal and spatial analysis of the 2014–2015 Ebola virus outbreak in West Africa. Nature, 524, 7563, 97–101. <https://doi.org/10.1038/nature14594>
8. CHARU, V., ZEGER, S., GOG, J., BJØRNSTAD, O.N., KISSLER, S., SIMONSEN, L., VIBOUD, C. (2017): Human mobility and the spatial transmission of influenza in the United States. PLoS computational biology, 13, 2, e1005382. <https://doi.org/10.1371/journal.pcbi.1005382>
9. COVID-19 NERC (National Emergency Response Center), Epidemiology, Case Management Team, Korea Centers for Disease Control, Prevention (2020): Contact Transmission of Covid-19 in South Korea. Novel investigation techniques for tracing contacts. Osong Public Health Research Perspectives, 11, 1, 60–63.
10. COX, M., ELLSWORTH, D. (1997): Application-controlled demand paging for out-of-core visualization. In IEEE Proceedings – Visualization’97, 235–244.
11. DELLICOUR, S., ROSE, R., PYBUS, O.G. (2016): Explaining the geographic spread of emerging epidemics: a framework for comparing viral phylogenies and environmental landscape data. BMC bioinformatics, 17, 1, 82. <https://doi.org/10.1186/s12859-016-0924-x>
12. DVORSKÝ, J., SNÁŠEL, V., VOŽENÍLEK, V. (2009): Map similarity testing using matrix decomposition. In 2009 International Conference on Intelligent Networking and Collaborative Systems. 290–294.
13. DZÚROVÁ, D., JAROLÍMEK, J. (2020): Šíření pandemie COVID-19 napříč geografickými i sociálními hranicemi: dokážeme mu čelit? Geografie, 125, 1, 1–20. <https://doi.org/10.37040/geografie2020125010001>
14. DESJARDINS, M.R., HOHL, A., DELMELLE, E.M. (2020): Rapid surveillance of COVID-19 in the United States using a prospective space-time scan statistic: Detecting and evaluating emerging clusters. Applied Geography, 102202.
15. Eurostat (2020): Over half of Sweden’s households made up of one person, Eurostat, https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20170905-1?inheritRedirect=true (8.5.2020).
16. European Commission (2020): Public Opinion, European Commission, https://ec.europa.eu/commfrontoffice/publicopinion/index.cfm/General/index (8.5.2020).
17. FERGUSON, N.M., CUMMINGS, D.A., FRASER, C., CAJKA, J.C., COOLEY, P.C., BURKE, D.S. (2006): Strategies for mitigating an influenza pandemic. Nature, 442, 7101, 448–452. <https://doi.org/10.1038/nature04795>
18. FISHER, D., WILDER-SMITH, A. (2020): The global community needs to swiftly ramp up the response to contain COVID-19. Lancet. S0140-6736(20)30679-6.
19. Google LLC (2020): Google COVID-19 Community Mobility Reports, Google LLC. https://www.google.com/covid19/mobility/ (22.5.2020).
20. HUANG, R., LIU, M., DING, Y. (2020): Spatial-temporal distribution of COVID-19 in China and its prediction: A data-driven modeling analysis. The Journal of Infection in Developing Countries, 14, 3, 246–253. <https://doi.org/10.3855/jidc.12585>
21. HUANG, C., WANG, Y., LI, X., REN, L., ZHAO, J., HU, Y., CHENG, Z. (2020): Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395, 10223, 497–506. <https://doi.org/10.1016/S0140-6736(20)30183-5>
22. JENKS, G.F. (1967): The data model concept in statistical mapping. International yearbook of cartography, 7, 186–190.
23. KAHRIK, A., NOVÁK, J., TEMELOVÁ, J., KADARIK, K., TAMMARU, T. (2015): Patterns and Drivers of Inner City Social Differentiation in Prague and Tallinn. Geografie, 120, 2, 275–295. <https://doi.org/10.37040/geografie2015120020275>
24. KAMEL BOULOS, M.N., GERAGHTY, E.M. (2020): Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: how 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. International Journal of Health Geographics, 19, 8. <https://doi.org/10.1186/s12942-020-00202-8>
25. KISSLER, S.M., GOG, J.R., VIBOUD, C., CHARU, V., BJØRNSTAD, O.N., SIMONSEN, L., GRENFELL, B.T. (2019): Geographic transmission hubs of the 2009 influenza pandemic in the United States. Epidemics, 26, 86–94. <https://doi.org/10.1016/j.epidem.2018.10.002>
26. KLÜSENER, S., GOLDSTEIN, J.R. (2016): A long‐standing demographic East–West divide in Germany. Population, Space and Place, 22, 1, 5–22. <https://doi.org/10.1002/psp.1870>
27. KOCH, T. (2005): Cartographies of disease: maps, mapping, and medicine. Redlands, CA (USA): Esri Press.
28. LI, C., CHEN, L.J., CHEN, X., ZHANG, M., PANG, C.P., CHEN, H. (2020a): Retrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020. Eurosurveillance, 25, 10, 2000199. <https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000199>
29. LI, Q., GUAN, X., WU, P., WANG, X., ZHOU, L., TONG, Y., XING, X. (2020b): Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England Journal of Medicine.
30. LEMEY, P., RAMBAUT, A., WELCH, J.J., SUCHARD, M.A. (2010): Phylogeography takes a relaxed random walk in continuous space and time. Molecular biology and evolution, 27, 8, 1877–1885. <https://doi.org/10.1093/molbev/msq067>
31. LONG, X., JIN, L., JOSHI, J. (2012): Exploring trajectory-driven local geographic topics in foursquare In Proceedings of the 2012 ACM Conference on Ubiquitous Computing – UbiComp ’12.
32. LÖCHTEFELD, M. (2019): Detournavigator – Using google location history to generate unfamiliar personal routes Conference on Human Factors in Computing Systems – Proceedings, 1–6.
33. MACKŮ, K., VOŽENÍLEK, V. (2019): Statistical synthesis of quality of life indicators – design of index construction in European regions. Geographia Cassoviensis, 13, 2, 196–209. <https://doi.org/10.33542/GC2019-2-06>
34. MAREK, L., PÁSZTO, V., TUČEK, P. (2015): Using clustering in geosciences: examples and case studies. 15th International Multidisciplinary Scientific Geoconference, Informatics, Geoinformatics and Remote Sensing, 2, 1207–1214.
35. MHCR (2020): Chytrá karanténa. Ministry of Health of the Czech Republic, https://koronavirus.mzcr.cz/chytra-karantena/ (18.4.2020).
36. MELOUN, M., MILITKÝ, J. (2011): Statistical Data Analysis A Practical Guide. In: Meloun, M., Militký, A. (eds.): New Delhi: Woodhead Publishing India.
37. NETRDOVÁ, P., NOSEK, V. (2016): Spatial patterns of unemployment in Central Europe: Emerging development axes beyond the Blue Banana. Journal of Maps, 12, 4, 701–706. <https://doi.org/10.1080/17445647.2015.1063467>
38. NG, R.T., JIAWEI HAN (2002): CLARANS: a method for clustering objects for spatial data mining. IEEE Transactions on Knowledge and Data Engineering, 14, 5, 1003–1016. <https://doi.org/10.1109/TKDE.2002.1033770>
39. NOULAS, A., SCELLATO, S., LAMBIOTTE, R., PONTIL, M., MASCOLO, C. (2012): A tale of many cities: Universal patterns in human urban mobility. PLoS ONE, 7, 5. <https://doi.org/10.1371/annotation/ca85bf7a-7922-47d5-8bfb-bcdf25af8c72>
40. NOULAS, A., SCELLATO, S., MASCOLO, C., PONTIL, M. (2011): An Empirical Study of Geographic User Activity Patterns in Foursquare Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, (January), 570–573.
41. NOVÁK, J., NETRDOVÁ, P. (2011): Spatial patterns of socioeconomic differentiation in the Czech Republic at the level of municipalities. Sociologický časopis/Czech Sociological Review, 47, 4, 717–744.
42. NOVÁK, J., TEMELOVÁ, J. (2012): Everyday Life and Spatial Mobility of Y oung People in Prague: A Pilot Study Using Mobile Phone Location Data. Sociologický časopis/Czech Sociological Review, 48, 5, 911–938.
43. PANETH, N. (2004): Assessing the contributions of John Snow to epidemiology: 150 years after removal of the broad street pump handle. Epidemiology, 15, 5, 514–516. <https://doi.org/10.1097/01.ede.0000135915.94799.00>
44. PÁSZTO, V. (2020): Introduction to Spatial Exploration of Economic Data. In: Pászto, V., Jürgens, C., Tominc, P., Burian, J. (eds.): Spationomy – Spatial Exploration of Economic Data and Methods of Interdisciplinary Analytics. Springer, Cham. <https://doi.org/10.1007/978-3-030-26626-4>
45. PÁSZTO, V., MACKŮ, K., BURIAN, J., PÁNEK, J., TUČEK, P. (2019): Capturing cross-border continuity: The case of the Czech-Polish borderland. Moravian Geographical Reports, 27, 2, 122–138. <https://doi.org/10.2478/mgr-2019-0010>
46. ROMERO, F.M. (2019): Creation of images in virtual map location services. The case of Google Maps Hipertext.Net: Revista Académica Sobre Documentación Digital y Comunicación Interactiva, 0, 18, 66–76.
47. ROMERO-ALVAREZ, D., PARIKH, N., OSTHUS, D., MARTINEZ, K., GENEROUS, N., DEL VALLE, S., MANORE, C. A. (2020): Google Health Trends performance reflecting dengue incidence for the Brazilian states. BMC infectious diseases, 20, 1–15. <https://doi.org/10.1186/s12879-020-04957-0>
48. RUKTANONCHAI, N.W., RUKTANONCHAI, C.W., FLOYD, J.R., TATEM, A.J. (2018): Using Google Location History data to quantify fine-scale human mobility. International Journal of Health Geographics, 17, 1, 1–13. <https://doi.org/10.1186/s12942-018-0150-z>
49. SANTANGELO, O.E., PROVENZANO, S., PIAZZA, D., GIORDANO, D., CALAMUSA, G., FIRENZE, A. (2019): SHORT PAPER Digital epidemiology: assessment of measles infection through Google Trends mechanism in Italy. Annali di igiene: medicina preventiva e di comunita, 31, 385–391.
50. SHAFFER, R., ZOLNIK, E. (2014): The geographic distribution of physician assistants in the US: Clustering analysis and changes from 2001 to 2008. Applied Geography, 53, 323–331. <https://doi.org/10.1016/j.apgeog.2014.06.027>
51. SHET, A., RAY, D., MALAVIGE, N., SANTOSHAM, M., BAR-ZEEV, N. (2020). Differential COVID-19-attributable mortality and BCG vaccine use in countries. medRxiv.
52. SIRKECI, I., YUCESAHIN, M.M. (2020): Coronavirus and Migration: Analysis of Human Mobility and the Spread of Covid-19. Migration Letters, 17, 2, 379–398. <https://doi.org/10.33182/ml.v17i2.935>
53. SNOW, J. (1856): Cholera and the water supply in the south districts of London in 1854. Journal of Public Health, and Sanitary Review, 2, 7, 239.
54. SUN, Y. (2017): Exploring potential of crowdsourced geographic information in studies of active travel and health: Strava data and cycling behaviour In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives.
55. TRYON, R.C. (1939): Cluster analysis: Correlation profile and orthometric (factor) analysis for the isolation of unities in mind and personality. Ann Arbor: Edwards Brothers.
56. VOŽENÍLEK, V., KAŇOK, J. et al. (2011): Metody tematické kartografie: vizualizace prostorových jevů. Palacký University Olomouc for the Department of Geoinformatics.
57. WHO (2020): Coronavirus disease 2019 (COVID-19) Situation Report 87. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (20 April 2020).
58. Worldometers.info (2020): COVID-19 Coronavirus Pandemic. Dover, Delaware (USA), https://www.worldometers.info/coronavirus/ (19.4.2020).
59. WALTER, S.D. (2000): Disease mapping: a historical perspective. In: Elliott P., Wakefield J., Best, N., Briggs D.J. (eds.): Spatial Epidemiology: Methods and Applications. Oxford University Press, Oxford, 223–252.
60. YASAKA, T.M., LEHRICH, B.M., SAHYOUNI, R. (2020): Peer-to-Peer Contact Tracing: Development of a Privacy-Preserving Smartphone App. JMIR mHealth and uHealth, 8, 4, e18936. <https://doi.org/10.2196/18936>
61. ZHOU, C., SU, F., PEI, T., ZHANG, A., DU, Y., LUO, B., SONG, C. (2020): COVID-19: challenges to GIS with big data. Geography and Sustainability. In press.
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive