Geografie 2019, 124, 83-101

https://doi.org/10.37040/geografie2019124010083

A review of studies involving the effect of land cover and land use on the urban heat island phenomenon, assessed by means of the MUKLIMO model

Ján Feranec1, Monika Kopecká1, Daniel Szatmári1, Juraj Holec2,3, Pavel Šťastný3, Róbert Pazúr1, Hana Bobáľová4

1Slovak Academy of Sciences, Institute of Geography, Bratislava, Slovakia
2Comenius University, Faculty of Natural Sciences, Department of Physical Geography and Geoinformatics, Bratislava, Slovakia
3Slovak Hydrometeorlogical Institute, Bratislava, Slovakia
4Comenius University, Faculty of Natural Sciences, Department of Cartography, Geoinformatics and Remote Sensing, Bratislava, Slovakia

Received March 2018
Accepted February 2019

References

1. ALMUTAIRI, M.K. (2015): Derivation of Urban Heat Island for Landsat-8 TIRS Riyadh City (KSA). Journal of Geoscience and Environment Protection, 3, 9, 18–23, http://file.scirp.org/ pdf/GEP_2015111314285678.pdf (31. 1. 2018). <https://doi.org/10.4236/gep.2015.39003>
2. ANNIBALLE, R., BONAFONI, S., PICHIERRI, M. (2014): Spatial and temporal trends of the surface and air heat island over Milan using MODIS data. Remote Sensing of Environment, 150, 163–171. <https://doi.org/10.1016/j.rse.2014.05.005>
3. ATKINSON, B.W. (2003): Numerical modelling of urban heat-island intensity. Boundary-Layer Meteorology, 109, 285–310. <https://doi.org/10.1023/A:1025820326672>
4. BALCHIN, W.G.V., PYE, E.M. (1947): A micro-climatological investigation of Bath and the surrounding district. Quarterly Journal of the Royal Meteorological Society, 73, 297–323. <https://doi.org/10.1002/qj.49707331706>
5. BECHTEL, B., ALEXANDER, P., BÖHNER, J., CHING, J., CONRAD, O., FEDDEMA, J., MILLS, G., SEE, L., STEWART, I. (2015): Mapping local climate zones for a worldwide database of form and function of cities. International Journal of Geographic Information, 4, 1, 199–219. <https://doi.org/10.3390/ijgi4010199>
6. BOKWA, A., DOBROVOLNÝ, P., GÁL, T., GELETIČ, J., GULYÁS, A., HAJTO, M.J., HOLLÓSI, B., KIELAR, R., LEHNERT, M., SKARBIT, N., ŠŤASTNÝ, P., ŠVEC, M., UNGER, J., VYSOUDIL, M., WALAWENDER, J.P., ŽUVELA-ALOISE, M. (2015): Modelling the impact of climate change on heat load increase in Central European cities. In: International Conference on Urban Climate (ICUC 9), www.meteo.fr/icuc9/LongAbstracts/ccma2-5-3151332_a.pdf (31. 1. 2018).
7. BROUSSE, O., MARTILLI, A., FOLEY, M., MILLS, G., BECHTEL, B. (2016): WUDAPT, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid. Urban Climate, 17, 116–134. <https://doi.org/10.1016/j.uclim.2016.04.001>
8. CHANDLER, T.J. (1965): The Climate of London. Hutchinson & Co, London.
9. CHANG, CH., LI, M., CHANG, S. (2007): A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning 80, 4, 386–395. <https://doi.org/10.1016/j.landurbplan.2006.09.005>
10. CHAPMAN, S., WATSON, M.E.J., SALAZAR, A., THATCHER, M., MCALPINE, A.C. (2017): The impact of urbanization and climate change on urban temperatures: a systematic review. Landscape Ecology, 32, 1921–1935. <https://doi.org/10.1007/s10980-017-0561-4>
11. DE RIDDER, K., LAUWAET, D., MAIHEU, B. (2015): UrbClim – A fast urban bounadary layer climate model. Urban Climate, 12, 21–48. <https://doi.org/10.1016/j.uclim.2015.01.001>
12. Deutscher Wetterdienst (2014): MUKLIMO_3 Thermodynamic Version. User’s Guide. DWD, Offenbach am Main.
13. DOBROVOLNÝ, P. (2013): The surface urban heat island in the city of Brno (Czech Republic) derived from land surface temperatures and selected reasons for its spatial variability. Theoretical and Applied Climatology, 112, 1, 89–98. <https://doi.org/10.1007/s00704-012-0717-8>
14. DOBROVOLNÝ, P., KRAHULA, L. (2015): The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic. Moravian Geographical Reports, 23, 3, 8–16. <https://doi.org/10.1515/mgr-2015-0013>
15. DOUSSET, B. (1991): Surface temperature statistics over Los Angeles: The influence of land use. In: Proceedings of IGARSS-91. IEEE: New York, 367–371. <https://doi.org/10.1109/IGARSS.1991.579156>
16. DOUSSET, B., GOURMELON, F. (2003): Surface temperatures of the Paris basin during summertime, using satellite remote sensing data. Proceedings 5th Int. Conference on Urban Climate, Lodz.
17. FABRIZI, R., BONAFONI, S., BIONDI, R. (2010): Satellite and Ground-Based Sensors for the Urban Heat Island Analysis in the City of Rome. Remote Sensing, 2, 5, 1400–1415. <https://doi.org/10.3390/rs2051400>
18. FABRIZI, R., DE SANTIS, A., GOMEZ, A. (2011): Satellite and ground-based sensors for the Urban Heat Island analysis in the city of Madrid. In: Stilla, U., Gamba, P., Juergens, C., Maktav, D. (eds): JURSE – Joint Urban Remote Sensing Event, Munich, 349–352. <https://doi.org/10.1109/JURSE.2011.5764791>
19. FERNANDO, H.J.S., eds. (2013): Handbook of Environmental Fluid Dynamics, Volume Two: Systems, Pollution, Modeling, and Measurements. CRC Press, Taylor & Francis Group, Boca Raton. <https://doi.org/10.1201/b13691>
20. GÁL, T., SKARBIT, N. (2017): Applying local climate zones as land use classes in MUKLIMO_3 for modelling urban heat load in the case of Szeged, Hungary. In: Buchholz, S., Noppel, H., Žuvela-Aloise, M., Hollósi, B.: 1sᵗ MUKLIMO_3 Users Workshop Programme and book of abstracts.
21. GELETIČ, J., LEHNERT, M. (2014): Vliv průmyslových, distribučních a obchodních center na prostorovou diferenciaci povrchové teploty. In: Herber, V. (ed.): Fyzickogeografický sborník, 12. Masarykova univerzita, Brno, 105–110.
22. GELETIČ, J., LEHNERT, M., DOBROVOLNÝ, P. (2016): Modelled spatio-temporal variability of air temperature in an urban climate and its validation: a case study of Brno, Czech Republic. Hungarian Geographical Bulletin, 65, 2, 169–180. <https://doi.org/10.15201/hungeobull.65.2.7>
23. GELETIČ, J., LEHNERT, M., SAVIĆ, S., MILOŠEVIĆ, D. (2018): Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Science of the Total Environment, 624, 385–395. <https://doi.org/10.1016/j.scitotenv.2017.12.076>
24. GRIMMOND, S. (2006): Progress in measuring and observing the urban atmosphere. Theoretical and Applied Climatology, 84, 3–22. <https://doi.org/10.1007/s00704-005-0140-5>
25. GRIMMOND, S. (2011): London’s Urban Climate: Historical and Contemporary Perspectives. City Ewathers: Meteorolgy and Urban Design 1950–2010. University of Manchester: Manchester, http://hummedia.manchester.ac.uk/schools/seed/Architecture/research/csud/city-weathers/programme/Grimmond_ClimateOfLondon.pdf (31. 1. 2018).
26. HERBEL, I., CROITORU, A.E., RUS, I., HARPA, G.V., CIUPERTEA, A.F. (2016): Detection of atmospheric urban heat island through direct measurements in Cluj-Napoca city, Romania. Hungarian Geographical Bulletin, 65, 2, 117–128. <https://doi.org/10.15201/hungeobull.65.2.3>
27. HOLEC, J., ŠŤASTNÝ, P. (2017): Modelovanie mestského ostrova tepla v Bratislave pomocou modelu MUKLIMO. Meteorologický časopis, 20, 65–72.
28. HOUET, T., PIGEON, G. (2011): Mapping urban climate zones and quantifying climate behaviors – an application on Toulouse urban area (France). Environmental Pollution, 159, 8–9, 2180–2192. <https://doi.org/10.1016/j.envpol.2010.12.027>
29. KRATZER, A. (1956): The Climate of Cities. American Ecological Society, Boston, http://urbanclimate. org/documents/AlbertKratzer_TheClimateOfCities.pdf (31. 1. 2018).
30. LAURIOLA, P. (2016): Introduction. In: Musco, F. (ed): Counteracting urban heat Island effects in a global climate change scenario. Springer: eBook, xlvii–liii.
31. LAUWAET, D., DE RIDDER, K., SAEED, S., BRISSON, E., CHATTERJEE, F., VAN LIPZIG, N.P.M., MAIHEU, B., HOOYBERGHS, H. (2016): Assessing the current and future urban heat island of Brussels. Urban Climate, 15, 1–15. <https://doi.org/10.1016/j.uclim.2015.11.008>
32. LI, J., SONG, C., CAO, L., ZHU, F., MENG, X., WU, J. (2011): Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 115, 3249–3263. <https://doi.org/10.1016/j.rse.2011.07.008>
33. LOUGEAY, R., BRAZEL, A., HUBBLE, M. (1996): Monitoring intraurban temperature patterns and associated land cover in Phoenix, Arizona using Landsat thermal data. Geocarto International, 11, 79–90. <https://doi.org/10.1080/10106049609354564>
34. MAJKOWSKA, A., KOLENDOWICZ, L., PÓLROLNICZAK, M., HAUKE, J., CZERNECKI, B. (2017): The urban heat island in the city of Poznan as derived from Landsat 5 TM. Theoretical and Applied Climatology, 128, 3–4, 769–783. <https://doi.org/10.1007/s00704-016-1737-6>
35. MANLEY, G. (1958): On the frequency of snowfall in metropolitan England. Quarterly Journal of the Royal Meteorological Society, 84, 70–72. <https://doi.org/10.1002/qj.49708435910>
36. MILLS, G. (2008): Luke Howard and The Climate of London. Weather, 63, 6, 153–157. <https://doi.org/10.1002/wea.195>
37. MILLS, G., BECHTEL, B., CHING, J., SEE, L., FEDDEMA, J., FOLEY, M., ALEXANDER, P., O’CONNOR, M. (2015): An Introduction to the WUDAPT project. In: 9th International Conference on Urban Climate, 20–24, July, Toulouse, France, http://www.meteo.fr/icuc9/LongAbstracts/gd2-1-6521222_a.pdf (31. 1. 2018).
38. OKE, T.R. (1982): The energetic basis of the urban heat Island. Quarterly Journal of the Royal Meteorological Society, 108, 1–24. <https://doi.org/10.1002/qj.49710845502>
39. OKE, T.R. (1995): The heat island characteristics of the urban boundary layer: characteristics, causes and effects. In: Cermak, J.E., Davenport, A.G., Plate, E.J., Viegas, D.X. (eds): Wind Climate in Cities. Kluwer Academic, Norwell, 81–107. <https://doi.org/10.1007/978-94-017-3686-2_5>
40. OKE, T.R. (2004): Initial guidance to obtain representative meteorological observations at urban sites, Instruments and methods of observation programe, IOM Report No. 81, WMO/TD No. 1250. World Meteorological Organization, Geneva.
41. QUITT, E. (1978): Zeleň a teplotní poměry měst. Životné prostredie, 11, 84–87.
42. RAO, P.K. (1972): Remote sensing of “Urban Heat Islands” from an environmental satellite. Bulletin of the American Meteorological Society, 53, 647–448.
43. RASUL, A., BALZTER, H., SMITH, C. (2015): Spatial variation of the daytime Surface urban Cool Island during the dry season in Erbil. Iraqi Kurdistan, from Landsat 8. Urban Climate, 176–186. <https://doi.org/10.1016/j.uclim.2015.09.001>
44. RASUL, A., BALZTER, H., SMITH, C., REMEDIOS, J., ADAMU, B., SOBRINO, J., SRIVAMIT, M. WENG, Q. (2017): A review on remote sensing of urban heat and cool islands. Land, 6, 2, 38. <https://doi.org/10.3390/land6020038>
45. RODRIGUEZ-ALVAREZ, J. (2013): Heat island and urban morphology: observations and analysis from six European cities. Proceedings of PLEA – 29th Conference Sustainable Architecture for Renewable Future. Munich, http://mediatum.ub.tum.de/doc/1169303/1169303. pdf (31. 1. 2018).
46. RODRIGUEZ-ALVAREZ, J. (2016): Surface Urban Heat Island and Building Energy: Visualization of Urban Climatic Flows. Pós, 23, 41, www.revistas.usp.br/posfau/article/download/ 116464/122685 (31. 1. 2018). <https://doi.org/10.11606/issn.2317-2762.v23i41p122-139>
47. ROTH, M., OKE, T.R., EMERY, W. J. (1989): Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. International Journal of Remote Sensing, 10, 1699–1720. <https://doi.org/10.1080/01431168908904002>
48. SCHERER, D., FEHRENBACH, U., BEHA, H.D., PARLOW, E. (1999): Improved concepts and methods in analysis and evaluation of the urban climate for optimizing urban climate processes. Atmospheric Environment, 33, 4185–4193. <https://doi.org/10.1016/S1352-2310(99)00161-2>
49. SCHWARZ, N., LAUTENBACH, S., SEPPELT, R. (2011): Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sensing of Environment, 115, 3175–3186. <https://doi.org/10.1016/j.rse.2011.07.003>
50. SCHWARZ, N., SCHLINK, U., FRANCK, U., GROΒMANN, K. (2012): Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators – An application for the city of Leipzig. Ecological Indicators, 18, 693–704. <https://doi.org/10.1016/j.ecolind.2012.01.001>
51. SEDLÁK, P., PRISLINGER, J., VYSOUDIL, M. (2010): Využití dat z družice LANDSAT pro detekci tepelného znečištění v městské a příměstské krajině. In: Scientific Papers of the University of Pardubice – Series D: Faculty of Economics and Administration, 16. Univerzita Pardubice: Pardubice, 264–278.
52. SHARMA, A., COURY, P., FERNANDO, H.J.S., HAMLET ALAN, F., HELLMANN, J.J., CHEN, F. (2016): Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model. Environmental Research Letters, 11, 6, 64004. <https://doi.org/10.1088/1748-9326/11/6/064004>
53. SHEPHERD, J.M., ANDERSEN, T., STROTHER, CH., HORST, A., BOUNOUA, L., MITRA, C. (2013): Urban climate archipelagos: a new framework for urban impacts on climate. Earthzine, https://earthzine.org/2013/11/29/urban-climate-archipelagos-a-new-framework-forurban-impacts-on-climate/ (31. 1. 2018).
54. SHIGETA, Y., OHASHI, Y., TSUKAMOTO, O. (2009): Urban Cool Island in Daytime – Analysis by Using Thermal Image and Air Temperature Measurements. In: The 7th International Conference on Urban Climate, 29 June – 3 July 2009, Yokohama.
55. SIEVERS, U., ZDUNKOWSKI, W. (1986): A microscale urban climate model. Contributions to atmospheric physics. Beiträge zur Physik der Atmosphäre, 59, 13–40.
56. SIEVERS, U. (2012): Das kleinskalige Strömungsmodell MUKLIMO_3. Teil 1: Theoretische Grundlagen, PC Basisversion, Validierung. In: Berichte des Deutschen Wetterdienstes, Band 240. Deutscher Wetterdienst: Offenbach am Main.
57. SIEVERS, U. (2016): Das kleinskalige Strömungsmodell MUKLIMO_3. Teil 2: Thermodynamische Erweiterungen. In: Berichte des Deutschen Wetterdienstes, Band 248. Selbstverlag des Deutschen Wetterdienstes, Offenbach am Main.
58. STEWART, D.I., OKE, T.R. (2012): Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93, 1879–1900. <https://doi.org/10.1175/BAMS-D-11-00019.1>
59. STREUTKER, D.R. (2003): Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sensing of Environment, 85, 3, 282–289. <https://doi.org/10.1016/S0034-4257(03)00007-5>
60. TRAN, H., UCHIHAMA, D., OCHI, S., YASOUKA, Y. (2006): Assessment with satellite data of the urban heat island effect in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation, 8, 34–48. <https://doi.org/10.1016/j.jag.2005.05.003>
61. UNGER, J., SÜMEGHY, Z., GULYÁS, Á., BOTTYÁN, Z., MUCSI, L. (2001): Land-use and meteorological aspects of the urban heat island. Meteorological Applications, 8, 189–194. <https://doi.org/10.1017/S1350482701002067>
62. VOOGT, J.A. (2004): Urban Heat Islands: Hotter Cities. http://www.actionbioscience.org/environment/voogt.html?newwindow=true (31. 1. 2018).
63. VOOGT, J.A., OKE, T.R. (2003): Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 3, 370–384. <https://doi.org/10.1016/S0034-4257(03)00079-8>
64. WANG, H., ZHANG, Y., TSOU, J.Y., LI, Y. (2017): Surface urban heat island analysis of Shanghai (China) based on the change of land use and land cover. Sustainability, 9, 1538. <https://doi.org/10.3390/su9091538>
65. WENG, Q. (2011): Remote sensing of urban biophysical environment. In: Weng Q. (ed.): Advances in environmental remote sensing: sensors, algorithms and application, CRC Press: Boca Raton, 513–533. <https://doi.org/10.1201/b10599-25>
66. WILMERS, F. (1991): Effects of vegetation on urban climate and buildings. Energy and Buildings, 15–16, 507–514. <https://doi.org/10.1016/0378-7788(90)90028-H>
67. XIAO, H., KOPECKÁ, M., GUO, S., GUAN, Y., CAI, D., ZHANG, CH., ZHANG, X., YAO, W. (2018): Responses of urban land surface temperature on land cover: A comparative study of Vienna and Madrid. Sustainability, 10, 260. <https://doi.org/10.3390/su10020260>
68. YANG, CH., HE, X., YAN, F., YU, L., BU, K., YANG, J., CHANG, L., ZHANG, S. (2017): Mapping the influence of land use/land cover changes on the urban heat island effect – a case study of Changchun, China. Sustainability, 9, 312. <https://doi.org/10.3390/su9020312>
69. YOW, D.M. (2007): Urban heat islands: observations, impacts, and adaptation. Geography Compass, 1, 6, 1227–1251. <https://doi.org/10.1111/j.1749-8198.2007.00063.x>
70. ZHOU, B., LAUWAET, D., HOOYBERGHS, H., DE RIDDER, K., KROPP, J.P., RYBSKI, D. (2016): Assessing seasonality in the surface urban heat island of London. Journal of Applied Meteorology and Climatology, 55, 3, 496–505. <https://doi.org/10.1175/JAMC-D-15-0041.1>
71. ŽUVELA-ALOISE, M., KOCH, R., NEUREITER, A., BÖHM, R., BUCHHOLZ, S. (2014): Reconstructing urban climate of Vienna based on historical maps dating to the early instrumental period. Urban Climate, 10, 490–508. <https://doi.org/10.1016/j.uclim.2014.04.002>
72. ŽUVELA-ALOISE, M., ANDRE, K., SCHWAIGER, H., BIRD, D. N., GALLAUN, H. (2018): Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs. Theoretical and Applied Climatology, 131, 1005–1018. <https://doi.org/10.1007/s00704-016-2024-2>
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive