Geografie 2019, 124, 41-55

https://doi.org/10.37040/geografie2019124010041

Long-term changes in precipitation phase in Czechia

Martin Hynčica1,2, Radan Huth1,3

1Charles University, Faculty of Science, Department of Physical Geography and Geoecology, Prague, Czechia
2Czech Hydrometeorological Institute, Regional Office, Ústí nad Labem, Czechia
3Czech Academy of Sciences, Institute of Atmospheric Physics, Prague, Czechia

Received June 2018
Accepted February 2019

References

1. BARNETT, T.P., ADAM, J.C., LETTENMAIER, D.P. (2005): Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303–309. <https://doi.org/10.1038/nature04141>
2. BRÁZDIL, R., CHROMÁ, K., DOBROVOLNÝ, P., TOLASZ, R. (2009): Climate fluctuations in the Czech Republic during the period 1961–2005. International Journal of Climatology, 29, 223–242. <https://doi.org/10.1002/joc.1718>
3. DAI, A. (2008): Temperature and pressure dependence of the rain-snow phase transition over land and ocean. Geophysical Research Letters, 35. <https://doi.org/10.1029/2008GL033295>
4. ELSASSER, H., BÜRKI, R. (2002): Climate change as a threat to tourism in the Alps. Climate Research, 20, 253–257. <https://doi.org/10.3354/cr020253>
5. FEICCABRINO, J., LUNDBERG, A. (2008): Precipitation phase discrimination in Sweden. 65ᵗh Eastern snow conference 28. 5. – 30. 5. 2008. Fairlee, USA, 239–254.
6. FENG, S., HU, Q. (2007): Changes in winter snowfall/precipitation ratio in the contiguous United States. Journal of Geophysical Resssearch, 112. <https://doi.org/10.1029/2007JD008397>
7. FUCHS, T., RAPP, J., RUBEL, F., RUDOLF, B. (2000): Correction of synoptic precipitation observations due to systematic measuring errors with special regard to precipitation phases. Physics and Chemistry of the Earth, 26, 689–693. <https://doi.org/10.1016/S1464-1909(01)00070-3>
8. HUNTINGTON, T.G., HODGKINS, G.A., KEIM, B.D., DUDLEY, R.W. (2004): Changes in the proportion of precipitation occurring as snow in New England (1949–2000). Journal of Climate, 17, 2626–2636. <https://doi.org/10.1175/1520-0442(2004)017%3C2626:CITPOP%3E2.0.CO;2>
9. IRANNEZHAD, M., RONKANEN, A. K., KIANI, S., CHEN, D., KLØVE, B. (2017): Long-term variability and trends in annual snowfall/total precipitation ratio in Finland and the role of atmospheric circulation patterns. Cold Regions Science and Technology, 143, 23–31. <https://doi.org/10.1016/j.coldregions.2017.08.008>
10. JENNINGS, K.S., WINCHELL, T.S., LIVNEH, B., MOLOTCH, N.P. (2018): Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere. Nature Communications, 9. <https://doi.org/10.1038/s41467-018-03629-7>
11. KNOWLES, N., DETTINGER, M.D., CAYAN, D.R. (2006): Trends in snowfall versus rainfall in the Western United States. Journal of Climate, 19, 4545–4559. <https://doi.org/10.1175/JCLI3850.1>
12. L’HÔTE, Y., CHEVALLIER, P., COUDRAIN, A., LEJEUNE, Y., ETCHEVERS, P. (2005): Relationship between precipitation phase and air temperature: comparison between the Bolivian Andes and the Swiss Alps. Hydrological Sciences Journal, 50, 989–997. <https://doi.org/10.1623/hysj.2005.50.6.989>
13. MARTY, CH., MEISTER, R. (2012): Long-term snow and weather observations at Weissfluhjoch and its relation to other high-altitude observatories in the Alps. Theoretical and Applied Climatology, 110, 573–583. <https://doi.org/10.1007/s00704-012-0584-3>
14. MIDDELKOOP, H., DAAMEN, K., GELLENS, D., GRABS, W., KWADIJK, J.C., LANG, H., WILKE, K. (2001): Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Climatic Change, 49, 105–128. <https://doi.org/10.1023/A:1010784727448>
15. PRETEL, J., METELKA, L., NOVICKÝ, O., DAŇHELKA, J., ROŽNOVSKÝ, J., JANOUŠ, D. (2011): Zpřesnění dosavadních odhadů dopadů klimatické změny v sektorech vodního hospodářství, zemědělství a lesnictví a návrhy adaptačních opatření. Technické shrnutí výsledků řešení projektu VaV SP/1a6/108/07 v letech 2007–2011. ČHÚ, UK, VÚV, CVGZ AV ČR, VÚRV, Praha.
16. SCHÖNER, W., AUER, I., BÖHM, R. (2009): Long term trend of snow depth at Sonnblick (Austrian Alps) and its relation to climate change. Hydrological Processes, 23, 1052–1063. <https://doi.org/10.1002/hyp.7209>
17. TAKALA, M., PULLIAINEN, J., METSÄMÄKI, S.J., KOSKINEN, J.T. (2009): Detection of snowmelt using spaceborne microwave radiometer data in Eurasia from 1979 to 2007. Transactions on Geoscience and Remote Sensing, 47, 2996–3007. <https://doi.org/10.1109/TGRS.2009.2018442>
18. TAN, A., ADAM, J.C., LETTENMAIER, D.P. (2011): Change in spring snowmelt timing in Eurasian Arctic rivers. Journal of Geophysical Research – Atmospheres, 116. <https://doi.org/10.1029/2010JD014337>
19. TWARDOSZ, R., ŁUPIKASZA, E., NIEDŹWIEDŹ, T., WALANUS, A. (2012): Long-term variability of occurrence of precipitation forms in winter in Kraków, Poland. Climatic Change, 113, 623–638. <https://doi.org/10.1007/s10584-011-0352-x>
20. YE, H., COHEN, J., RAWLINS, M. (2013): Discrimination of solid from liquid precipitation over Northern Eurasia using surface atmospheric conditions. Journal of Climate, 14, 1345–1355. <https://doi.org/10.1175/JHM-D-12-0164.1>
21. ZANOTTI, F., ENDRIZZI, S., BERTOLDI, G., RIGON, R. (2004): The GEOTOP snow module. Hydrological Processes, 18, 3667–3679. <https://doi.org/10.1002/hyp.5794>
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive