Geografie 2018, 123, 179-199

https://doi.org/10.37040/geografie2018123020179

Detailed reconstruction of gully headcut retreat using exposed tree roots: a case study from the Vsetínské vrchy Mts. (Outer Western Carpathians)

Karel Šilhán

University of Ostrava, Faculty of Science, Department of Physical Geography and Geoecology, Czechia

Received March 2017
Accepted March 2018

References

1. ALESTALO, J. (1971): Dendrochronological interpretation of geomorphic processes. Fennia, 105, 1–139.
2. AVNI, Y. (2005): Gully incision as a key factor in desertification in an arid environment, the Negev highlands, Israel. Catena, 63, 185–220. <https://doi.org/10.1016/j.catena.2005.06.004>
3. BALLESTEROS, J.A., BODOQUE, J.M., LUCÍA, A., MARTÍN-DUQUE, J.F., DÍEZ-HERRERO, A., RUIZ-VILLANUEVA, V., RUBIALES, J.M., GENOVA, M. (2013): Dendrogeomorpholgy in Badlands: Methods, case studies and prospects. Catena, 106, 113–122. <https://doi.org/10.1016/j.catena.2012.08.009>
4. BALLESTEROS, J.A., STOFFEL, M., MARTÍN-DUQUE, J.F., CORONA, C., LUCIA, A., BODOQUE, J.M., MONTGOMERY, D.R. (2017): Gully evolution and geomorphic adjustments of badlands to reforestation. Nature Scientific Report.
5. BAROŇ, I., CÍLEK, V., KREJČÍ, O., MELICHAR, R., HUBATKA, F. (2004): Structure and dynamics of deep-seated slope failures in the Magura Flysch Nappe, outer Western Carpathians (Czech Republic). Natural Hazards and Earth System Sciences, 4, 549–562. <https://doi.org/10.5194/nhess-4-549-2004>
6. BODOQUE, J.M., LUCÍA, A., BALLESTEROS, J.A., MARTÍN-DUQUE, J.F., RUBIALES, J.M., GENOVA, M. (2011): Measuring medium-term sheet erosion in gullies from trees: a case study using dendrogeomorphological analysis of exposed pine roots in central Iberia. Geomorphology, 134, 417–425. <https://doi.org/10.1016/j.geomorph.2011.07.016>
7. BODOQUE, J.M., BALLESTEROS, J.A., LUCÍA, A., DÍEZ-HERRERO, A., MARTÍN-DUQUE, J.F. (2015): Source of error and uncertainty in sheet erosion rates estimated from dendrogeomorphology. – Earth Surface Processes and Landforms, 40, 1146–1157. <https://doi.org/10.1002/esp.3701>
8. BOLLSCHWEILER, M., STOFFEL, M., EHMISCH, M., MONBARON, M. (2007): Reconstructing spatio-temporal patterns of debris-flow activity using dendrogeomorphological methods. Geomorphology, 87, 337–351. <https://doi.org/10.1016/j.geomorph.2006.10.002>
9. BRÁZDIL, R., KIRCHNER, K. (2007): Vybrané přírodní extrémy a jejich dopady na Moravě a ve Slezsku. Masarykova univerzita, Český hydrometeorologický ústav, Ústav Geoniky Akademie Věd České republiky, v.v.i., Brno, Praha, Ostrava.
10. BRYAN, R.B. (2004): Gully-scale implications of rill network and confluence processes. In: Li, Y., Poesen, J., Valentin, C. (eds.): Gully Erosion Under Global Change. Sichuan Science and Technology Press, Chengdu, China, 73–95.
11. BUZEK, L. (1994): Eroze lesní půdy v povodí horní Ostravice. Zpravodaj Beskydy, 89–94.
12. BUZEK, L. (1998): Eroze lesní půdy v Moravskoslezských Beskydech. Veronica, 12, 40–41.
13. BUZEK, L. (1999): Water erosion of the forested area in the central part of the Moravskoslezské Beskydy Mts. – north-eastern part of the Czech Republic. In: Modern nature use and anthropogenic processes. Russian Academy of Sciences, University of Silesia, Irkutsk-Sosnowiec, 18–28.
14. BUZEK, L. (2000): Eroze lesní půdy při vyšších vodních srážkách a tání sněhové pokrývky. Geografie – Sborník České geografické společnosti, 105, 317–332.
15. CERDAN, O., GOVERS, G., LE BISSONNAIS, Y., VAN OOST, K., POESEN, J., SABY, N., GOBIN, A., VACCA, A., QUINTON, J., AUERSWALD, K., KLIK, A., KWAAD, F. J. P. M., RACLOT, D., IONITA, I., REJMAN, J., ROUSSEVA, S., MUXART, T., ROXO, M. J., DOSTAL, T. (2010): Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology, 122, 167–177. <https://doi.org/10.1016/j.geomorph.2010.06.011>
16. CHARTIER, M.P., ROSTAGNO, C.M., ROIG, F.A. (2009): Soil erosion rates in rangelands of northeastern Patagonia: A dendrogeomorphological analysis using exposed shrub roots. Geomorphology, 106, 344–351. <https://doi.org/10.1016/j.geomorph.2008.11.015>
17. CHARTIER, M.P., GIANTOMASI, M.A., RENISON, D., ROIG, F.A. (2016): Exposed roots as indicators of geomorphic processes: A case-study from Polylepis mountain woodlands of Central Argentina. Dendrochronologia, 37, 57–63. <https://doi.org/10.1016/j.dendro.2015.11.003>
18. CORONA, CH., ROVÉRA, G., LOPEZ SAEZ, J., STOFFEL, M., PERFETTINI, P. (2010): Spatiotemporal reconstruction of snow avalanche activity using tree rings: Pierres Jean Jeanne avalanche talus, Massif de l’Oisans, France. Catena, 83, 107–118.
19. CORONA, C., LOPEZ SAEZ, J., ROVÉRA, G., STOFFEL, M., ASTRADE, L., BERGER, F. (2011): High resolution, quantitative reconstruction of erosion rates based on anatomical changes in exposed roots at Draix, Alpes de Haute-Provence — critical review of existing approaches and independent quality control of results. Geomorphology, 125, 433–444. <https://doi.org/10.1016/j.geomorph.2010.10.030>
20. ESRI (2005): ArcGIS 9.2. Redlands, CA.
21. FANTUCCI, R., SORRISO-VALVO, M. (1999): Dendrogeomorphological analysis of a slope near Lago, Calabria (Italy). Geomorphology, 30, 165–174. <https://doi.org/10.1016/S0169-555X(99)00052-5>
22. FRANKL, A., POESEN, J., DECKERS, J., HAILE, M., NYSSEN, J. (2012): Gully head retreat rates in the semi-arid highlands of Northern Ethiopia. Geomorphology, 173–174, 185–195. <https://doi.org/10.1016/j.geomorph.2012.06.011>
23. GÄRTNER, H. (2007): Tree roots – Methodological review and new development in dating and quantifying erosive processes. Geomorphology, 86, 243–251. <https://doi.org/10.1016/j.geomorph.2006.09.001>
24. GÄRTNER, H., SCHWEINGRUBER, F. H., DIKAU, R. (2001): Determination of erosion rates by analyzing structural changes in the growth pattern of exposed roots. Dendrochronologia, 19, 81–91.
25. HITZ, O.M., GÄRTNER, H., HEINRICH, I., MONBARON, M. (2008): Application of ash (Fraxinus excelsior L.) roots to determine erosion rates in mountain torrents. Catena, 72, 248–258. <https://doi.org/10.1016/j.catena.2007.05.008>
26. IONITA, I., FULLEN, M.A., ZGŁOBICKI, W., POESSEN, J. (2015): Gully erosion as a natural and human-induced hazard. Natural Hazards, 79, 1–5. <https://doi.org/10.1007/s11069-015-1935-z>
27. JANEAU, J.L., BRICQUET, J.P., PLANCHON, O., VALENTIN, C. (2003): Soil crusting and infiltration on steep slopes in northern Thailand. European Journal of Soil Science, 54, 543–554. <https://doi.org/10.1046/j.1365-2389.2003.00494.x>
28. KLIMEŠ, J., BAROŇ, I., PÁNEK, T., KOSAČÍK, T., BURDA, J., KRESTA, F., HRADECKÝ, J. (2009): Investigation of recent catastrophic landslides in the flysch belt of Outer Western Carpathians (Czech Republic): progress towards better hazard assessment. Natural Hazards and Earth System Sciences, 9, 119–128. <https://doi.org/10.5194/nhess-9-119-2009>
29. LI, Y., POESEN, J., VALENTIN, C. (2004): Gully Erosion Under Global Change. Sichuan Science Technology Press, Chengu, China. 354 pp.
30. LOPEZ SAEZ, J., CORONA, C., STOFFEL, M., ROVÉRA, G., ASTRADE, L., BERGER, F. (2011): Mapping of erosion rates in marly badlands based on anatomical changes in exposed roots and LiDAR data. – Earth Surface Processes and Landforms, 36, 1162–1171. <https://doi.org/10.1002/esp.2141>
31. LOPEZ SAEZ, J., CORONO, C., STOFFEL, M., ASTRADE, L., BERGER, F., MALET, J.P. (2012): Dendrogeomorphic reconstruction of past landslide reactivation with seasonal precision: Bois Noir landslide, southern French Alps. Landslides, 9, 189–203. <https://doi.org/10.1007/s10346-011-0284-6>
32. MALIK, I. (2006): Gully erosion dating by means of anatomical changes in exposed roots (Proboszczowicka Plateau, Southern Poland). Geochronometria, 25, 57–66.
33. MALIK, I. (2008): Dating of small gully formation and establishing erosion rates in old gullies under forest by means of anatomical changes in exposed tree roots (Southern Poland). Geomorphology, 93, 421–436. <https://doi.org/10.1016/j.geomorph.2007.03.007>
34. MALIK, I., MATYJA, M. (2008): Bank erosion history of a mountain stream determined by means of anatomical changes in exposed tree roots over the last 100 years (Bílá Opava River – Czech Republic). Geomorphology, 98, 126–142. <https://doi.org/10.1016/j.geomorph.2007.02.030>
35. MARZOLFF, I., RIES, J.B. (2007): Gully erosion in semi-arid landscapes. – Zeitschrix für Geomorphologie, 51, 405–425. <https://doi.org/10.1127/0372-8854/2007/0051-0405>
36. MONTGOMERY, D.R., BUFFINGTON, J.M. (1997): Channel-reach morphology in mountain drainage basins. Geological Society American Bulletin, 109, 596–611. <https://doi.org/10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2>
37. MORAWSKA, M., WRONSKA-WALACH, D. (2012): Dendrogeomorphological analysis of gully erosion in different types of landscapes. Examples from Szeskie Hills and Gorce Mountains. In: Gärtner, H., Rozenberg, P., Montés, P., Bertel, O., Helle, G., Heinrich, I. (eds.): TRACE – Tree Rings in Archaeology, Potsdam, 119–126.
38. NYSSEN, J., POESEN, J., MOEYERSONS, J., LUYTEN, E., VEYRET PICOT, M., DECKERS, J., MITIKU, H., GOVERS, G. (2002): Impact of road building on gully erosion risk, a case study from the northern Ethiopian highlands. Earth Surface Processes and Landforms, 27, 1267–1283. <https://doi.org/10.1002/esp.404>
39. PANAGOS, P., BORRELLI, P., POESEN, J., BALLABIO, C., LUGATO, E., MEUSBURGER, K., MONTANARELLA, L., ALEWELL, C. (2015): The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 54, 438–447. <https://doi.org/10.1016/j.envsci.2015.08.012>
40. PÁNEK, T., HRADECKÝ, J., MINÁR, J., ŠILHÁN, K. (2010): Recurrent landslides predisposed by fault-induced weathering of flysch in the Western Carpathians. In: Calcaterra, D., Parise, M. (eds.): Weathering as a Predisposing Factor to Slope Movements, 248.
41. POESEN, J., VANDEKERCKHOVE, L., NACHTERGAELE, J., OOSTWOUD WIJDENES, D., VERSTRAETEN, G., VAN WESEMAEL, B. (2002): Gully erosion in dryland environments. In: Bull, L.J., Kirkby, M.J. (eds.): Dryland Rivers: Hydrology and Geomorphology of Semi-arid Channels. Wiley, Chichester, U.K., 229–262.
42. POESEN, J., NACHTERGAELE, J., VERSTRAETEN, G., VALENTIN, C. (2003): Gully erosion and environmental change: importance and research needs. Catena, 91, 91–133. <https://doi.org/10.1016/S0341-8162(02)00143-1>
43. REID, L.M., DUNE, T. (1996): Rapid Evaluation of Sediment Budgets, 1996. Catena Verlag Gmbh, Reiskirchen, Germany.
44. ROVÉRA, G., LOPEZ-SAEZ, J., CORONA, C., STOFFEL, M., BERGER, F. (2013): Preliminary quantification of the erosion of sandy-gravelly cliffs on Porquerolles island (Provence, France) through dendrogeomorphology, using exposed roots of Aleppo pine (Pinus halepensis Mill.). Geografia Fisica e Dinamica Quaternaria, 36, 181–187.
45. RUBIALES, J.M., BODOQUE, J.M., BALLESTEROS, J.A., DÍEZ-HERRERO, A. (2008): Response of Pinus sylvestris roots to sheet-erosion exposure: an anatomical approach. Natural Hazards and Earth System Sciences, 8, 223–231. <https://doi.org/10.5194/nhess-8-223-2008>
46. SANCHIS, M.P., TORRI, D., BORSELLI, L., POESEN, J. (2008): Climate effects on soil erodibility. Earth Surface Processes and Landforms, 33, 1082–1097. <https://doi.org/10.1002/esp.1604>
47. SCHWEINGRUBER, F.H. (1978): Mikroskopische Holzanatomie. Swiss Federal Institute of Forestry Research, Birmensdorf, Switzerland.
48. ŠILHÁN, K. (2012a): Dendrogeomorphological analysis of evolution of slope processes on flysch rocks (the Vsetínské vrchy Mts; Czech Republic). Carpathian Journal of Earth and Environmental Sciences, 7, 39–49.
49. ŠILHÁN, K. (2012b): Frequency of fast geomorphological processes in high-gradient streams: case study from the Moravskoslezsk, Beskydy Mts (Czech Republic) using dendrogeomorphic methods. Geochronometria, 39, 122–132. <https://doi.org/10.2478/s13386-012-0002-8>
50. ŠILHÁN, K., PÁNEK, T., DUŠEK, R., HAVLŮ, D., BRÁZDIL, R., KAŠIČKOVÁ, L., HRADECKÝ, J. (2013): The dating of bedrock landslide reactivations using dendrogeomorphic techniques: The Mazák landslide, Outer Western Carpathians (Czech Republic). Catena, 104, 1–13. <https://doi.org/10.1016/j.catena.2012.12.010>
51. ŠILHÁN, K., PÁNEK, T., HRADECKÝ, J. (2012): Tree-ring analysis in the reconstruction of slope instabilities associated with earthquakes and precipitation (the Crimean Mountains, Ukraine). Geomorphology, 173–174, 174–184. <https://doi.org/10.1016/j.geomorph.2012.06.010>
52. ŠILHÁN, K., PÁNEK, T., HRADECKÝ, J. (2013): Implication of spatial distribution of rockfall reconstructed by dendrogeomorphological methods. Natural Hazards and Earth System Sciences, 13, 1817–1826. <https://doi.org/10.5194/nhess-13-1817-2013>
53. ŠILHÁN, K., PÁNEK, T., HRADECKÝ, J., TICHAVSKÝ, R. (2016): Polygenetic origin and surface development of the Laspi slope deformation (Crimean Mountains): the multidisciplinary approach. Zeitschrix für Geomorphologie, 60, 11–20. <https://doi.org/10.1127/zfg/2016/0227>
54. ŠILHÁN, K., RUŽEK, I., BURIAN, L. (2016): Dynamics of gully side erosion: a case study using tree roots exposure data. Open Geosciences, 8, 108–116. <https://doi.org/10.1515/geo-2016-0013>
55. ŠILHÁN, K., TICHAVSKÝ, R. (2017): Snow avalanche and debris flow activity in the High Tatras Mountains: New data using dendrogeomorphic survey. Cold Regions Science and Technology, 134, 45–53. <https://doi.org/10.1016/j.coldregions.2016.12.002>
56. SIRVENT, J., DESIR, G., GUTIERREZ, M., SANCHO, C., BENITO, G. (1997): Erosion rates in badland areas recorded by collectors, erosion pins and profilometer techniques (Ebro Basin, NE-Spain). Geomorphology, 18, 61–75. <https://doi.org/10.1016/S0169-555X(96)00023-2>
57. STOFFEL, M. (2006): A Review of Studies Dealing with Tree Rings and Rockfall Activity: The Role of Dendrogeomorphology in Natural Hazard Research. Natural Hazards, 39, 51–70. <https://doi.org/10.1007/s11069-005-2961-z>
58. STOFFEL, M., CASTELLER, A., LUCKMAN, B.H., VILLALBA, R. (2012): Spatiotemporal analysis of channel wall erosion in ephemeral torrents using tree roots – An example from the Patagonian Andes. Geology, 40, 247–250. <https://doi.org/10.1130/G32751.1>
59. STOFFEL, M., CORONA, C., BALLESTEROS CANOVAS, J. A., BODOQUE, J. M. (2013): Dating and quantification of erosion processes based on exposed roots. Earth-Science Reviews, 123, 18–34. <https://doi.org/10.1016/j.earscirev.2013.04.002>
60. STRUNK, H. (1997): Dating of geomorphological processes using dendrogeomorphological methods. Catena, 31, 137–151. <https://doi.org/10.1016/S0341-8162(97)00031-3>
61. SUN, L., WANG, X., HONG, J. (2014): Response of anatomical structures in tree roots to an erosion event on the southeastern Tibetan Plateau. Geomorphology, 204, 317–624. <https://doi.org/10.1016/j.geomorph.2013.09.007>
62. TICHAVSKÝ, R., ŠILHÁN, K. (2015): Dendrogeomorphic approaches for identifying the probable occurrence of debris flows and related torrential processes in steep headwater catchments: The Hrubý Jeseník Mountains, Czech Republic. Geomorphology, 246, 445–457. <https://doi.org/10.1016/j.geomorph.2015.06.027>
63. TRAPPMANN, D., CORONA, C., STOFFEL, M. (2013): Rolling stones and tree rings: a state of research on dendrogeomorphic reconstructions of rockfall. Progress in Physical Geography, 37, 701–716. <https://doi.org/10.1177/0309133313506451>
64. VALENTIN, C., POESEN, J., LI, Y. (2005): Gully erosion: Impacts, factors and control. Catena, 63, 132–153. <https://doi.org/10.1016/j.catena.2005.06.001>
65. VANDEKERCKHOVE, L., MUYS, B., POESEN, J., DE WEERDT, B., COPE, N. (2001): A method for dendrochronological assessment of medium-term gully erosion rates. Catena, 45, 123–161. <https://doi.org/10.1016/S0341-8162(01)00142-4>
66. VANDEKERCKHOVE, L., POESEN, J., GOVERS, G. (2003): Medium-term gully headcut retreat rates in Southeast Spain determined from aerial photographs and ground measurements. Catena, 50, 329–352. <https://doi.org/10.1016/S0341-8162(02)00132-7>
67. VANMAERCKE, M., POESEN, J., VAN MELE, B., DEMUZERE, M., BRUYNSEELS, A., GOLOSOV, V., RODIRGUES BEZERRA, J. F., BOLYSOV, S., DVINSKIH, A., FRANKL, A., FUSEINA, Y., TEIXEIRA GUERRA, A. J., HAREGEWEYN, N., IONITA, I., IMWANGANA, F. M., MOEYERSONS, J., MOSHE, I., SAMANI, A. N., NIACSU, L., NYSSEN, J., OTSUKI, Y., RADOANE, M., RYSIN, I., RYZHOV, Y. V., YERMOLAEV, O. (2016): How fast do gully headcuts retreat? Earth-Science Reviews, 154, 336–355. <https://doi.org/10.1016/j.earscirev.2016.01.009>
68. VANNOPPEN, W., VANMAERCKE, M., DE BAETS, S., POESEN, J. (2015): A review of the mechanical effects of plant roots on concentrated flow erosion rates. Earth-Science Reviews, 150, 666–678. <https://doi.org/10.1016/j.earscirev.2015.08.011>
69. VIAS (2005): Time Table. Installation and instruction manual. Ver. 2.1, Vienna Institute of Archaeological Science, Vienna.
70. VOICULESCU, M., ONACA, A. (2013): Snow avalanche assessment in the Sinaia ski area (Bucegi Mountains, Southern Carpathians) using the dendrogeomorphology method. Area, 45, 109–122. <https://doi.org/10.1111/area.12003>
71. WASSON, R. J., CAITCHEON, G., MURRAY, A. S., MCCULLOCH, M., QUADE, J. (2002): Sourcing sediment using multiple tracers in the catchment of Lake Argyle, northwestern Australia. Environmental Management, 29, 634–646. <https://doi.org/10.1007/s00267-001-0049-4>
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive