Geografie 2018, 123, 141-158
https://doi.org/10.37040/geografie2018123020141
Assessing inland excess water risk in Kanjiza (Serbia)
References
1. , K. (2013): Inland Excess Water Projection based on Meteorological and Pedological Monitoring Data on a Study Area Located in the Southern Part of The Great Hungarian Plain. Journal of Environmental Geography, 6, 3–4, 31–37.
<https://doi.org/10.2478/jengeo-2013-0004>
2. DEMIN, A.P. (2010): Water management complex of Russia: Concept, state of the art, and problems. Water resources, 37, 5, 711–726.
<https://doi.org/10.1134/S009780781>
3. , L., BRÁZDIL, R., VALÁŠEK, H. (2015): Impacts of hydrometeorological extremes in the Bohemian-Moravian highlands in 1706–1889 as derived from taxation records. Geografie, 120, 4, 465–488.
4. EC (2010): Staff Working Paper on Risk Assessment and Mapping Guidelines for Disaster Management. European Commission, Brussels.
5. , K., ŠOBR, M., KOCUM, J., JANSKÝ, B. (2014): Hydrological regime of Adygine lake, Tien Shan, Kyrgyzstan. Geografie, 119, 4, 320–341.
6. , M.K., CHOWDHURY, V.M. (2007): Challenges of using remote sensing and GIS in developing nations. Hydrogeology Journal, 15, 197–200.
<https://doi.org/10.1007/s10040-006-0117-1>
7. , S. (2015): Molin – The village that disappeared from the Central Banat. Researches review of the Department of geography, tourism and hotel management, 44, 2, 146–159.
8. MARKOVIĆ, V., NAGY, I., SZIK, A., PERGE, K., LASZLO, P., PAPATHOMA-KOHLE, M., PROMPER, C., GLADE, T. (2016): Assessing drought and drought related wildfire risk in Kanjiza, Serbia-the SEERISK methodology. Natural Hazards, 80, 2, 709–726.
<https://doi.org/10.1007/s11069-015-1991-4>
9. MEZŐSI, G., BATA, T., MEYER, B. C., BLANKA, V., LADÁNYI, Z. (2014): Climate change impacts on environmental hazards on the Great Hungarian Plain, Carpathian Basin. International Journal of Disaster Risk Science, 5, 2, 136–146.
<https://doi.org/10.1007/s13753-014-0016-3>
10. THE MUNICIPALITY OF KIKINDA (2010): Saopštenja Gradskog veća. http://www.kikinda.org.rs/index.php?language=lat&page=samouprava&option=saopstenjaopstinskogveca&strana=3&godina=2010 (1.11.2015, in Serbian).
11. National Directorate General for Disaster Management. (2013): Social awareness questionnaire – SEERISK, https://seerisk.rsoe.hu/share/page/site/seerisk-project/document (4.11.2015).
12. National Directorate General for Disaster Management. (2014): Guideline on climate change adaption and risk assessment in the Danube Macro-region, http://www.rsoe.hu/projectfiles/seeriskOther/download/climate_change_adaptation.pdf (16.2.2015).
13. OBRADOVIĆ, Đ., DOGAN, V., ŽIVANOV, M., KAROLY, B. (2014): Hardware realisation of data logger system for inland excess water. In Dokić, B. (ed.): Symposium proceedings of X Inernational Symposium on Industrial Electronics. Faculty of Electrical Engineering, Banja Luka, 155–159.
14. PAPATHOMA-KÖHLE, M., PROMPER, C., GLADE, T., SZEKELY M. (2013): SEERISK: Common risk assessment methodology for the Danube macro-region, https://seerisk.rsoe.hu/share/page/site/seeriskproject/documentdetails?nodeRef=workspace://SpacesStore/656b0d96-bc9e-4a67-8f99-3805087533f9 (4.11.2015).
15. PÁSZTOR, L., KÖRÖSPARTI, J., BOZÁN, C., LABORCZI, A., TAKÁCS, K. (2015): Spatial risk assessment of hydrological extremities: Inland excess water hazard, Szabolcs-Szatmár-Bereg County, Hungary. Journal of Maps, 11, 4, 636–644.
<https://doi.org/10.1080/17445647.2014.954647>
16. PAVIĆ, D., MÉSZÁROS, M., DOLINAJ, D., SAVIĆ, S., OBRADOVIĆ, D., BRKIĆ, M., ŽIVANOV, M. (2013): Inland excess water in Vojvodina, (Serbia) – innovative methods in cross border research for an old, common problem. In: Lóki, J. (ed): Az elmélet és a gyakorlat találkozása a térinformatikában IV. Debreceni Egyetemi Kiadó, Debrecen, 89–96.
17. PAVIĆ, D., MESAROŠ, M., SAVIĆ, S. DOLINAJ D., MILOŠEVIĆ, D. (2014): Inland excess water monitoring in Vojvodina (Serbia). In: Mimica Dukić, N., Filipović, D. (eds.): The third Romanian-Bulgarian-Hungarian-Serbian conference, Geographical Research and Cross-Border Cooperation within the Lower Basin of the Danube. Faculty of Science, Novi Sad, 29–30.
18. , J., FARSANG, A., MEZŐSI, G., GÁL, N. (2011): A belvízképződés elméleti háttere. Theoretical background of the formation of inland excess water. Földrajzi közlemények, 135, 4, 339–349.
19. RHMSS (2013): Meteorological yearbook. Republic Hydro-meteorological Service of Serbia, Belgrade.
20. RSOG (2011): National strategy for the protection and rescue in emergency situations, RS Official Gazette, No.86/11, http://www.mup.gov.rs/cms_lat/sadrzaj.nsf/Nacionalna_strategija_zastite_i_spasavanja_u_vanrednim_situacijama_lat.pdf (12.11.2015).
21. SZATMÁRI, J., VAN LEEUWEN, B. (2013): Inland Excess Water. University of Szeged, Department of Physical Geography and Geoinformatics, Szeged. Spatial Plan of Republic of Serbia (2010): National Assembly of Republic of Serbia, http://195.222.96.93//media/zakoni/Spatial%20Plan%20of%20the%20Republic%20of%20Serbia_2010-2020_abridged%20(1).pdf (4.12.2015).
22. Spatial Plan of Municipality of Kanjiza (2012): National Assembly of Republic of Serbia, http://www.kanjiza.rs/dokumentumok/2012/mk_teruleti_terv_tervezet/ppo_kanjiza_nacrt/ppo_kanjiza_nacrt.pdf (2.12.2015).
23. TSAKIRIS, G. (2014): Flood risk assessment: concepts, modelling, applications. Natural Hazards and Earth System Sciences 14, 1361–1369.
<https://doi.org/10.5194/nhess-14-1361-2014>
24. VAN LEEUWEN, B., HENITS, L., MÉSZÁROS, M., TOBAK, Z., SZATMÁRI, J., PAVIĆ, D., SAVIĆ, S., DOLINAJ, D. (2013): Classification methods for inland excess water modelling, Journal of Environmental Geography 6, 1–2, 1–11.
<https://doi.org/10.2478/v10326-012-0001-5>

