Geografie 2018, 123, 141-158
https://doi.org/10.37040/geografie2018123020141
Assessing inland excess water risk in Kanjiza (Serbia)
References
1. 2013): Inland Excess Water Projection based on Meteorological and Pedological Monitoring Data on a Study Area Located in the Southern Part of The Great Hungarian Plain. Journal of Environmental Geography, 6, 3–4, 31–37.
< , K. (https://doi.org/10.2478/jengeo-2013-0004>
2. DEMIN, A.P. (2010): Water management complex of Russia: Concept, state of the art, and problems. Water resources, 37, 5, 711–726.
<https://doi.org/10.1134/S009780781>
3. 2015): Impacts of hydrometeorological extremes in the Bohemian-Moravian highlands in 1706–1889 as derived from taxation records. Geografie, 120, 4, 465–488.
, L., BRÁZDIL, R., VALÁŠEK, H. (
4. EC (2010): Staff Working Paper on Risk Assessment and Mapping Guidelines for Disaster Management. European Commission, Brussels.
5. 2014): Hydrological regime of Adygine lake, Tien Shan, Kyrgyzstan. Geografie, 119, 4, 320–341.
, K., ŠOBR, M., KOCUM, J., JANSKÝ, B. (
6. 2007): Challenges of using remote sensing and GIS in developing nations. Hydrogeology Journal, 15, 197–200.
< , M.K., CHOWDHURY, V.M. (https://doi.org/10.1007/s10040-006-0117-1>
7. 2015): Molin – The village that disappeared from the Central Banat. Researches review of the Department of geography, tourism and hotel management, 44, 2, 146–159.
, S. (
8. MARKOVIĆ, V., NAGY, I., SZIK, A., PERGE, K., LASZLO, P., PAPATHOMA-KOHLE, M., PROMPER, C., GLADE, T. (2016): Assessing drought and drought related wildfire risk in Kanjiza, Serbia-the SEERISK methodology. Natural Hazards, 80, 2, 709–726.
<https://doi.org/10.1007/s11069-015-1991-4>
9. MEZŐSI, G., BATA, T., MEYER, B. C., BLANKA, V., LADÁNYI, Z. (2014): Climate change impacts on environmental hazards on the Great Hungarian Plain, Carpathian Basin. International Journal of Disaster Risk Science, 5, 2, 136–146.
<https://doi.org/10.1007/s13753-014-0016-3>
10. THE MUNICIPALITY OF KIKINDA (2010): Saopštenja Gradskog veća. http://www.kikinda.org.rs/index.php?language=lat&page=samouprava&option=saopstenjaopstinskogveca&strana=3&godina=2010 (1.11.2015, in Serbian).
11. National Directorate General for Disaster Management. (2013): Social awareness questionnaire – SEERISK, https://seerisk.rsoe.hu/share/page/site/seerisk-project/document (4.11.2015).
12. National Directorate General for Disaster Management. (2014): Guideline on climate change adaption and risk assessment in the Danube Macro-region, http://www.rsoe.hu/projectfiles/seeriskOther/download/climate_change_adaptation.pdf (16.2.2015).
13. OBRADOVIĆ, Đ., DOGAN, V., ŽIVANOV, M., KAROLY, B. (2014): Hardware realisation of data logger system for inland excess water. In Dokić, B. (ed.): Symposium proceedings of X Inernational Symposium on Industrial Electronics. Faculty of Electrical Engineering, Banja Luka, 155–159.
14. PAPATHOMA-KÖHLE, M., PROMPER, C., GLADE, T., SZEKELY M. (2013): SEERISK: Common risk assessment methodology for the Danube macro-region, https://seerisk.rsoe.hu/share/page/site/seeriskproject/documentdetails?nodeRef=workspace://SpacesStore/656b0d96-bc9e-4a67-8f99-3805087533f9 (4.11.2015).
15. PÁSZTOR, L., KÖRÖSPARTI, J., BOZÁN, C., LABORCZI, A., TAKÁCS, K. (2015): Spatial risk assessment of hydrological extremities: Inland excess water hazard, Szabolcs-Szatmár-Bereg County, Hungary. Journal of Maps, 11, 4, 636–644.
<https://doi.org/10.1080/17445647.2014.954647>
16. PAVIĆ, D., MÉSZÁROS, M., DOLINAJ, D., SAVIĆ, S., OBRADOVIĆ, D., BRKIĆ, M., ŽIVANOV, M. (2013): Inland excess water in Vojvodina, (Serbia) – innovative methods in cross border research for an old, common problem. In: Lóki, J. (ed): Az elmélet és a gyakorlat találkozása a térinformatikában IV. Debreceni Egyetemi Kiadó, Debrecen, 89–96.
17. PAVIĆ, D., MESAROŠ, M., SAVIĆ, S. DOLINAJ D., MILOŠEVIĆ, D. (2014): Inland excess water monitoring in Vojvodina (Serbia). In: Mimica Dukić, N., Filipović, D. (eds.): The third Romanian-Bulgarian-Hungarian-Serbian conference, Geographical Research and Cross-Border Cooperation within the Lower Basin of the Danube. Faculty of Science, Novi Sad, 29–30.
18. 2011): A belvízképződés elméleti háttere. Theoretical background of the formation of inland excess water. Földrajzi közlemények, 135, 4, 339–349.
, J., FARSANG, A., MEZŐSI, G., GÁL, N. (
19. RHMSS (2013): Meteorological yearbook. Republic Hydro-meteorological Service of Serbia, Belgrade.
20. RSOG (2011): National strategy for the protection and rescue in emergency situations, RS Official Gazette, No.86/11, http://www.mup.gov.rs/cms_lat/sadrzaj.nsf/Nacionalna_strategija_zastite_i_spasavanja_u_vanrednim_situacijama_lat.pdf (12.11.2015).
21. SZATMÁRI, J., VAN LEEUWEN, B. (2013): Inland Excess Water. University of Szeged, Department of Physical Geography and Geoinformatics, Szeged. Spatial Plan of Republic of Serbia (2010): National Assembly of Republic of Serbia, http://195.222.96.93//media/zakoni/Spatial%20Plan%20of%20the%20Republic%20of%20Serbia_2010-2020_abridged%20(1).pdf (4.12.2015).
22. Spatial Plan of Municipality of Kanjiza (2012): National Assembly of Republic of Serbia, http://www.kanjiza.rs/dokumentumok/2012/mk_teruleti_terv_tervezet/ppo_kanjiza_nacrt/ppo_kanjiza_nacrt.pdf (2.12.2015).
23. TSAKIRIS, G. (2014): Flood risk assessment: concepts, modelling, applications. Natural Hazards and Earth System Sciences 14, 1361–1369.
<https://doi.org/10.5194/nhess-14-1361-2014>
24. VAN LEEUWEN, B., HENITS, L., MÉSZÁROS, M., TOBAK, Z., SZATMÁRI, J., PAVIĆ, D., SAVIĆ, S., DOLINAJ, D. (2013): Classification methods for inland excess water modelling, Journal of Environmental Geography 6, 1–2, 1–11.
<https://doi.org/10.2478/v10326-012-0001-5>