Geografie 2016, 121, 349-367

https://doi.org/10.37040/geografie2016121030349

Remotely-piloted aerial system for photogrammetry: orthoimage generation for mapping applications

Jūratė Sužiedelytė Visockienė1, Domantas Bručas2, Renata Bagdžiūnaitė1, Rūta Puzienė1, Arminas Stanionis1, Ugnius Ragauskas1

1Vilnius Gediminas Technical University, Sauletekio av. 11, Vilnius, LT-10223, Lithuania
2Space Science and Technology Institute, Sauletekio av. 15, Vilnius, LT-1023, Lithuania

Received September 2014
Accepted February 2016

References

1. ALBERTZ, J., KREILING, W. (1989): Photogrammetric guide. Karlsruhe, Wichmann.
2. BĚLKA, L., VOŽENÍLEK, V. (2014): Prototypes of orthoimage maps as tools for geophysical application. Pure nad Applied Geophysics, 171, 6, 1047–1059. <https://doi.org/10.1007/s00024-013-0665-y>
3. BERTACCHINI, E., CASTAGNETTI, C., CORSINI, A., DE CONOA, S. (2014): Remotely piloted aircraft systems (RPAS) for high resolution topography and monitoring: civil protection purposes on hydrogeological contexts. Conference paper in proceedings of SPIE – the international society for optical engineering. <https://doi.org/10.1117/12.2067406>
4. BRUCAS, D., SUZIEDELYTE-VISOCKIENE, J., RAGAUSKAS, U., BERTESKA, E., RUDINSKAS, D. (2013): Testing and implementation of low cost UAV platform for orthophoto imaging. ISPRS Archives, XL–1/W2, 55–59.
5. CHO, G., HILDEBRAND, A., CLAUSSEN, J., COSYN, P., MORRIS, S. (2013): Pilotless aerial vehicle systems: size, scale and functions. Coordinates, 9, 1, 8–16.
6. COLOMINA, I., MOLINA, P. (2014): Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79–97. <https://doi.org/10.1016/j.isprsjprs.2014.02.013>
7. DEMIREL, A.S., AKDENIZ, H., AKSU, O. (2004): Two functional software for internal use; flight planning and Presenting of digital orthophotos. ISPRS Archives, XXXV, B4, 344–347.
8. EISENBEISS, H. (2004): A Mini Unmanned Aerial Vehicle (UAV): System overview and image acquisition. ISPRS Archives, XXXVI–5/W1, 1–7.
9. ELING, C.H., KLINGBEIL, L., WIELAND, M., KUHLMANN, H. (2013): A precise position and attitude determination system for Lightweight unmanned aerial vehicles. UAV-g2013, XL-1/W2, 113–118.
10. EVERAERTS, J. (2008): The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping. ISPRS Archives, XXXVII, B1, 1–6.
11. GUPTA, S.G., GHONGE, M.M., JAWANDHIYA, P.M. (2013): Review of Unmanned Aircraft System (UAS). International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2, 4, 2278–1323.
12. KISELEVA, A.S. (2002): Accuracy control at various stages of photogrammetric processing in PhotoMod system, http://www.racurs.ru (2.4.2015).
13. KUPKOVÁ, V., BIČÍK, I., NAJMAN, J. (2013): Land Cover Changes along the Iron Curtain 1990–2006. Geografie, 118, 2, 95–115.
14. LALIBERTE, A.S., JEFFREY, E.H., RANGO, A., WINTERS, C. (2010): Acquisition, or the rectification, and Object-based Classification of Unmanned Aerial Vehicle (UAV) Imagery for Rangeland Monitoring. Journal of Photogrammetric Engineering & Remote Sensing, 76, 6, 661–672. <https://doi.org/10.14358/PERS.76.6.661>
15. LI, X., SHAO, G. (2014): Object-Based Land-Cover Mapping with High Resolution Aerial Photography at a County Scale in Midwestern USA. ISPRS Journal of Photogrammetry and Remote Sensing, 6, 11372–11390.
16. MAYR, W. (2011): Unmanned aerial systems in use for mapping at BLOM. Photogrammetric Week, 125–134.
17. MAYR, W. (2013): Unmanned aerial systems – for the rest of us. Photogrammetric Week, 151–163.
18. NEX, F., REMONDINO, F. (2014): UAV for 3D mapping application: a review. Appl Geomat, 6, 1–15. <https://doi.org/10.1007/s12518-013-0120-x>
19. PETRIE, G. (2013): Commercial operation of lightweight UAVs for aerial imaging and mapping. GEOInformatics, 16, 1, 28–39.
20. SCHENK, T. (2005): Introduction to Photogrammetry, http://www.mat.uc.pt/~gil/downloads/IntroPhoto.pdf (22.3.2015).
21. SINGH, S.P., JAIN, K., MANDLA, R.V. (2014): Image based 3D city modeling: comparative study. ISPRS Archives, ISPRS Technical Commission V Symposium, XL-5, 537–546.
22. SUŽIEDELYTĖ VISOCKIENĖ, J. (2012): Photogrammetry requirements for digital camera calibration applying Tcc and MatLab software. Journal of Geodesy and Cartography, 38, 3, 106–110. <https://doi.org/10.3846/20296991.2012.728895>
23. SUŽIEDELYTĖ VISOCKIENĖ, J., BRUČAS, D. (2009): Influence of digital camera errors on the photogrammetric image processing. Journal of Geodesy and Cartography, 35, 1, 29–33. <https://doi.org/10.3846/1392-1541.2009.35.29-33>
24. SUŽIEDELYTĖ VISOCKIENĖ, J., BRUČAS, D., RAGAUSKAS, U. (2014): Comparison of UAV images processing softwares, Journal of Measurements in Engineering, 2, 2, 96–106.
25. TEETS, E.H., DONOHUE, C.J., UNDERWOOD, K., BAUER, J.E. (1998): Atmospheric Considerations for Uninhabited Aerial Vehicle (UAV) Flight Test Planning, technical memorandum.
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive