Geografie 2016, 121, 300-323

https://doi.org/10.37040/geografie2016121020300

Classifications of atmospheric circulation

Jan Stryhal1, Radan Huth1,2

1Charles University in Prague, Faculty of Science, Department of Physical Geography and Geoecology, Prague, Czechia
2Institute of Atmospheric Physics, Prague, Czechia

Received March 2015
Accepted December 2015

References

1. ANAGNOSTOPOULOU, C., TOLIKA, K., MAHERAS, P. (2009): Classification of circulation types: a new flexible automated approach applicable to NCEP and GCM datasets. Theoretical and Applied Climatology, 96, 1–2, 3–15. <https://doi.org/10.1007/s00704-008-0032-6>
2. ANSELL, T. J. a kol. (2006): Daily mean sea level pressure reconstructions for the European–North Atlantic region for the period 1850–2003. Journal of Climate, 19, 12, 2717–2742. <https://doi.org/10.1175/JCLI3775.1>
3. BÁRDOSSY, A., STEHLÍK, J., CASPARY, H.-J. (2002): Automated objective classification of daily circulation patterns for precipitation and temperature downscaling based on optimized fuzzy rules. Climate Research, 23, 1, 11–22. <https://doi.org/10.3354/cr023011>
4. BARRY, R. G., PERRY, A. H. (1973): Synoptic climatology. Methods and applications. Methuen, London.
5. BECK, C., JACOBEIT, J., JONES, P. D. (2007): Frequency and within-type variations of large-scale circulation types and their effects on low-frequency climate variability in central Europe since 1780. International Journal of Climatology, 27, 4, 473–491. <https://doi.org/10.1002/joc.1410>
6. BELLEFLAMME, A., FETTWEIS, X., ERPICUM, M. (2014): Do global warming-induced circulation pattern changes affect temperature and precipitation over Europe during summer? International Journal of Climatology. <https://doi.org/10.1002/joc.4070>
7. BERANOVÁ, R., HUTH, R. (2005): Long-term changes in the heat island of Prague under different synoptic conditions. Theoretical and Applied Climatology, 82, 1–2, 113–118. <https://doi.org/10.1007/s00704-004-0115-y>
8. BLENDER, R., FRAEDRICH, K., LUNKEIT, F. (1997): Identification of cyclone-track regimes in the North Atlantic. Quarterly Journal of the Royal Meteorological Society, 123, 539, 727–741. <https://doi.org/10.1002/qj.49712353910>
9. BOWER, D., MCGREGOR, G. R., HANNAH, D. M, SHERIDAN, S. C. (2007): Development of a spatial synoptic classification scheme for western Europe. International Journal of Climatology, 27, 15, 2017–2040. <https://doi.org/10.1002/joc.1501>
10. BRÁDKA, J. (1968): Typisace v meteorologii. Meteorologické zprávy, 21, 4, 122–125.
11. BRÁDKA, J., DŘEVIKOVSKÝ, A., GREGOR, Z., KOLESÁR, J. (1961): Počasí na území Čech a Moravy v typických povětrnostních situacích. Hydrometeorologický ústav, Praha.
12. BRÁZDIL, R., BUDÍKOVÁ, M., FAŠKO, P., LAPIN, M. (1995): Fluctuations of maximum and minimum air temperatures in the Czech and the Slovak Republics. Atmospheric Research, 37, 1–3, 53–65. <https://doi.org/10.1016/0169-8095(94)00068-O>
13. BRÁZDIL, R., CHROMÁ, K., DOBROVOLNÝ, P., TOLASZ, R. (2009a): Climate fluctuations in the Czech Republic during the period 1961–2005. International Journal of Climatology, 29, 2, 223–242. <https://doi.org/10.1002/joc.1718>
14. BRÁZDIL, R., ŠTEKL, J. (1986): Cirkulační procesy a atmosférické srážky v ČSSR. Univerzita J. E. Purkyně, Brno.
15. BRÁZDIL, R., TRNKA, M., DOBROVOLNÝ, P., CHROMÁ, K., HLAVINKA, P., ŽALUD, Z. (2009b): Variability of droughts in the Czech Republic, 1881–2006. Theoretical and Applied Climatology, 97, 3–4, 297–315. <https://doi.org/10.1007/s00704-008-0065-x>
16. BRŮŽEK, V. (1982): Dlouhodobé kolísání teploty, srážek a cirkulace ve střední Evropě. Meteorologické zprávy, 35, 5, 136–140.
17. BRŮŽEK, V. (1986): Kolísání cirkulace ve vztahu ke slunečnímu svitu a možnosti jejich dlouhodobé předpovědi. Meteorologické zprávy, 39, 3, 76–80.
18. BRŮŽEK, V. (1987): Průběh srážek ve vztahu k cirkulaci. Meteorologické zprávy, 40, 1, 20–25.
19. CAHYNOVÁ, M., HUTH, R. (2007a): Short note on inhomogeneities in the Hess-Brezowsky catalogue of circulation types. Meteorologický časopis, 10, 3, 171–174.
20. CAHYNOVÁ, M., HUTH, R. (2007b): Trendy v kalendáři povětrnostních situací HMÚ/ČHMÚ v období 1946–2002. Meteorologické zprávy, 60, 6, 175–182.
21. CAHYNOVÁ, M., HUTH, R. (2009a): Changes of atmospheric circulation in central Europe and their influence on climatic trends in the Czech Republic. Theoretical and Applied Climatology, 96, 1–2, 57–68. <https://doi.org/10.1007/s00704-008-0097-2>
22. CAHYNOVÁ, M., HUTH, R. (2009b): Enhanced lifetime of atmospheric circulation types over Europe: fact or fiction? Tellus, 61A, 407–416. <https://doi.org/10.1111/j.1600-0870.2009.00393.x>
23. CAHYNOVÁ, M., HUTH, R. (2010): Circulation vs. climatic changes over the Czech Republic: A comprehensive study based on the COST733 database of atmospheric circulation classifications. Physics and Chemistry of the Earth, 35, 9–12, 422–428. <https://doi.org/10.1016/j.pce.2009.11.002>
24. CAHYNOVÁ, M., HUTH, R. (2014): Atmospheric circulation influence on climatic trends in Europe: an analysis of circulation type classifications from the COST733 catalogue. International Journal of Climatology. <https://doi.org/10.1002/joc.4003>
25. COHEN, S. J. (1983): Classification of 500 mb height anomalies using obliquely rotated principal components. Journal of Climate and Applied Meteorology, 22, 12, 1975–1988. <https://doi.org/10.1175/1520-0450(1983)022<1975:COMHAU>2.0.CO;2>
26. COMPAGNUCCI, R. H., RICHMAN, M. B. (2008): Can principal component analysis provide atmospheric circulation or teleconnection patterns? International Journal of Climatology, 28, 6, 703–726. <https://doi.org/10.1002/joc.1574>
27. COMPO, G. P. a kol. (2011): The Twentieth century reanalysis project. Quarterly Journal of the Royal Meteorological Society, 137, 654, 1–28. <https://doi.org/10.1002/qj.776>
28. CRANE, R. G., BARRY, R. G. (1988): Comparison of the MSL synoptic pressure patterns of the Arctic as observed and simulated by the GISS general circulation model. Meteorology and Atmospheric Physics, 39, 3–4, 169–183. <https://doi.org/10.1007/BF01030295>
29. ČEKAL, R. (2007): Analýza atmosférických příčin povodní na příkladu povodí horní Ohře. In: Langhammer, J. (ed.): Povodně a změny v krajině. Přírodovědecká fakulta Univerzity Karlovy v Praze, Ministerstvo životního prostředí ČR, Praha, 111–122.
30. DAVIS, R. E., ROSSIER, C. E., ENFIELD, K. B. (2012): The impact of weather on influenza and pneumonia mortality in New York City, 1975–2002: a retrospective study. PLOS ONE, 7. <https://doi.org/10.1371/journal.pone.0034091>
31. DEJMAL, K., ŘEZÁČOVÁ, D. (1997): Regresní model pro předpověď bouřek. Vliv rozdělení podle synoptické situace na přesnost kategorické předpovědi. Meteorologické zprávy, 50, 4, 120–126.
32. DEMUZERE, M., WERNER, M., VAN LIPZIG, N., ROECKNER, E. (2009): An analysis of present and future ECHAM5 pressure fields using a classification of circulation patterns. International Journal of Climatology, 29, 12, 1796–1810. <https://doi.org/10.1002/joc.1821>
33. DROBEK, P., ŠOPKO, F. (2013): Aplikace hodnocení úspěšnosti meteorologických předpovědí v současném provozu předpovědní služby ČHMÚ. Meteorologické zprávy, 66, 2, 56–60.
34. FIŠÁK, J. (1999): Období s krátkým a dlouhým slunečním svitem na Milešovce (1946–1995). Meteorologické zprávy, 52, 1, 17–25.
35. EL-KADI, A. K. A., SMITHSON, P. A. (1992): Atmospheric classifications and synoptic climatology. Progress in Physical Geography, 16, 4, 432–455. <https://doi.org/10.1177/030913339201600403>
36. FRAKES, B., YARNAL, B. (1997): A procedure for blending manual and correlation-based synoptic classification. International Journal of Climatology, 17, 13, 1381–1396. <https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1381::AID-JOC204>3.0.CO;2-Q>
37. HANSLIAN, D., BRÁZDIL, R., ŠTEKL, J., KAKOS, V. (2000): Vliv cyklon středomořského původu na vysoké denní úhrny srážek na Milešovce a Lysé hoře v období 1961–1995. Meteorologické zprávy, 53, 2, 33–41.
38. HESS, P., BREZOWSKY, H. (1952): Katalog der Grosswetterlagen Europas. Berichte des Deutschen Wetterdienstes in der US-Zone, č. 33. Deutscher Wetterdienst, Offenbach am Main.
39. HEWITSON, B. C., CRANE, R. G. (2002): Self-organizing maps: applications to synoptic climatology. Climate Research, 22, 1, 13–26. <https://doi.org/10.3354/cr022013>
40. HMÚ (1972): Katalog povětrnostních situací pro území ČSSR. Hydrometeorologický ústav, Praha.
41. HUTH, R. (1996a): An intercomparison of computer-assisted circulation classification methods. International Journal of Climatology, 16, 8, 893–922. <https://doi.org/10.1002/(SICI)1097-0088(199608)16:8<893::AID-JOC51>3.0.CO;2-Q>
42. HUTH, R. (1996b): Properties of the circulation classification scheme based on the rotated principal component analysis. Meteorology and Atmospheric Physics, 59, 3–4, 217–233. <https://doi.org/10.1007/BF01030145>
43. HUTH, R. (2000): A circulation classification scheme applicable in GCM studies. Theoretical and Applied Climatology, 67, 1–2, 1–18. <https://doi.org/10.1007/s007040070012>
44. HUTH, R., BECK, C., PHILIPP, A., DEMUZERE, M., USTRNUL, Z., CAHYNOVÁ, M., KYSELÝ, J., TVEITO, O. E. (2008): Classifications of atmospheric circulation patterns: recent advances and applications. Annals of the New York Academy of Sciences, 1146, 1, 105–152. <https://doi.org/10.1196/annals.1446.019>
45. HUTH, R., POKORNÁ, L. (2004): Trendy jedenácti klimatických prvků v období 1961–1998 v České republice. Meteorologické zprávy, 57, 6, 168–178.
46. HUTH, R., POKORNÁ, L. (2005): Simultaneous analysis of climatic trends in multiple variables: an example of application of multivariate statistical methods. International Journal of Climatology, 25, 4, 469–484. <https://doi.org/10.1002/joc.1146>
47. CHEN, D. (2000): A monthly circulation climatology for Sweden and its application to a winter temperature case study. International Journal of Climatology, 20, 10, 1067–1076. <https://doi.org/10.1002/1097-0088(200008)20:10<1067::AID-JOC528>3.0.CO;2-Q>
48. CHLÁDOVÁ, Z., KALVOVÁ, J. (2005): Změny vybraných klimatických charakteristik v České republice v období 1961–2000. Meteorologické zprávy, 58, 5, 146–153.
49. IĽKO, J. (1982): Zmeny extrémnych denných teplot v Bratislave v priebehu rôznych synoptickych procesov. Meteorologické zprávy, 35, 2, 42–45.
50. JACOBEIT, J., WANNER, H., LUTERBACHER, J., BECK, C., PHILIPP, A., STURM, K. (2003): Atmospheric circulation variability in the North-Atlantic-European area since the mid-seventeenth century. Climate Dynamics, 20, 4, 341–352. <https://doi.org/10.1007/s00382-002-0278-0>
51. JAMES, P. M. (2006): An assessment of European synoptic variability in Hadley Centre Global Environmental models based on an objective classification of weather regimes. Climate Dynamics, 27, 2–3, 215–231. <https://doi.org/10.1007/s00382-006-0133-9>
52. JAMES, P. M. (2007): An objective classification method for Hess and Brezowsky Grosswetterlagen over Europe. Theoretical and Applied Climatology, 88, 1–2, 17–42. <https://doi.org/10.1007/s00704-006-0239-3>
53. JONES, G. V., DAVIS, R. E. (2000): Using a synoptic climatological approach to understand climate-viticulture relationship. International Journal of Climatology, 20, 8, 813–837. <https://doi.org/10.1002/1097-0088(20000630)20:8<813::AID-JOC495>3.0.CO;2-W>
54. JONES, P. D., HARPHAM, C., BRIFFA, K. R. (2013): Lamb weather types derived from reanalysis products. International Journal of Climatology, 33, 5, 1129–1139. <https://doi.org/10.1002/joc.3498>
55. JONES, P. D., HULME, M., BRIFFA, K. R. (1993): A comparison of Lamb circulation types with an objective classification scheme. International Journal of Climatology, 13, 6, 655–663. <https://doi.org/10.1002/joc.3370130606>
56. KAUFMANN, P., WEBER, R. O. (1996): Classification of mesoscale wind fields in the MISTRAL field experiment. Journal of Applied Meteorology, 35, 11, 1963–1979. <https://doi.org/10.1175/1520-0450(1996)035<1963:COMWFI>2.0.CO;2>
57. KIRCHHOFER, W. (1974): Classification of European 500 mb patterns. Arbeitsbericht der Schweizerischen Meteorologischen Zentralanstalt, 43, Zürich.
58. KNOZOVÁ, G., HORA, P. (2010): Vyhodnocení meteorologických podmínek doprovázejících smogové epizody v České republice. Meteorologické zprávy, 63, 1, 21–28.
59. KOHONEN, T. (1989): Self-organization and associative memory. Springer-Verlag, Berlin.
60. KRŠKA, K. (1969): Ještě několik poznámek k československým typizacím povětrnostních situací. Meteorologické zprávy, 22, 2, 35–38.
61. KŘIVANCOVÁ, S., VAVRUŠKA, F. (1997): Základní meteorologické prvky v jednotlivých povětrnostních situacích na území České republiky v období 1961–1990. Český hydrometeorologický ústav, Praha.
62. KVĚTOŇ, V., ŽÁK, M. (2011): Vliv středomořských tlakových níží na kalamitní sněžení v České republice. Meteorologické zprávy, 64, 5, 129–136.
63. KYSELÝ, J. (2002): Temporal fluctuations in heat waves at Prague-Klementinum, the Czech Republic, from 1901–97, and their relationships to atmospheric circulation. International Journal of Climatology, 22, 1, 33–50. <https://doi.org/10.1002/joc.720>
64. KYSELÝ, J., HUTH, R. (2004): Heat-related mortality in the Czech Republic examined through synoptic and ‘traditional’ approaches. Climate Research, 25, 3, 265–274. <https://doi.org/10.3354/cr025265>
65. KYSELÝ, J., HUTH, R. (2006): Changes in atmospheric circulation over Europe detected by objective and subjective methods. Theoretical and Applied Climatology, 85, 1–2, 19–36. <https://doi.org/10.1007/s00704-005-0164-x>
66. KYSELÝ, J., KAKOS, V., HOLÁSKOVÁ, O. (2008): Dlouhodobé změny četnosti povodní na Vltavě v Praze a na Labi v Děčíně ve vztahu k atmosférické cirkulaci a významným srážkám. Meteorologické zprávy, 61, 1, 5–13.
67. KYSELÝ, J., KALVOVÁ, J. (1998): Horké vlny na Jižní Moravě v letech 1961–1990. Meteorologické zprávy, 51, 3, 65–72.
68. LAMB, H. H. (1972): British Isles weather types and register of daily sequence of circulation patterns, 1861–1971. Geophysical Memoir, č. 116. Her Majesty’s Stationery Office, London.
69. LANDGREN, O. A., SKAUGEN, T. E., HAUGEN, J. E. (2013): Evaluation of circulation patterns over Scandinavia from ENSEMBLES regional climate models. Report paper of the Norwegian Meteorological Institute, č. 4. Norwegian Meteorological Institute, Oslo, Norway, nestr.
70. LUND, I. A. (1963): Map-pattern classification by statistical methods. Journal of applied meteorology, 2, 1, 56–65. <https://doi.org/10.1175/1520-0450(1963)002<0056:MPCBSM>2.0.CO;2>
71. MAKRA, L., MIKA, J., BARTZOKAS, A., BÉCZI, R., SÜMEGHY, Z. (2009): Comparison of objective air-mass types and the Péczely weather types and their ability to classify levels of air pollutants in Szeged, Hungary. International Journal of Environment and Pollution, 36, 1–3, 81–98. <https://doi.org/10.1504/IJEP.2009.021818>
72. MAKRA, L., MIKA, J., BARTZOKAS, A., BÉCZI, R., BORSOS, E. SŰMEGHY, Z. (2006): An objective classification system of air mass types for Szeged, Hungary with special interest to the levels of the main air pollutants. Meteorology and Atmospheric Physics, 92, 1–2, 115–137. <https://doi.org/10.1007/s00703-005-0143-x>
73. MCKENDRY, I. G., STEYN, D. G., MCBEAN, G. (1995): Validation of synoptic circulation patterns simulated by the Canadian climate centre general circulation model for western North America. Atmosphere-Ocean, 33, 4, 809–825. <https://doi.org/10.1080/07055900.1995.9649554>
74. MCKENDRY, I. G., STAHL, K., MOORE, R. D. (2006): Synoptic sea-level pressure patterns generated by a general circulation model: comparison with types derived from NCEP/NCAR re-analysis and implications for downscaling. International Journal of Climatology, 26, 12, 1727–1736. <https://doi.org/10.1002/joc.1337>
75. MINĎÁŠ, J., ŠKVARENINA, J. (1995): Výskyt a charakteristika hmiel na Slovensku v období 1971–1989. Meteorologické zprávy, 48, 5, 133–139.
76. OBREGÓN, M. A., SERRANO, A., CANCILLO, M. L., GARCÍA, J. A. (2011): Classification of air masses arriving at Cáceres (Spain) and its relationship with their aerosol load. Proceedings of the Global Conference on Global Warming 2011. Lisbon, Portugal, 1–8.
77. PAEGLE, J. N. (1974): Prediction of precipitation probability based on 500-mb flow types. Journal of Applied Meteorology, 13, 2, 213–220. <https://doi.org/10.1175/1520-0450(1974)013<0213:POPPBO>2.0.CO;2>
78. PASTOR, M. A., CASADO, M. J. (2012): Use of circulation types classifications to evaluate AR4 climate models over the Euro-Atlantic region. Climate Dynamics, 39, 7–8, 2059–2077. <https://doi.org/10.1007/s00382-012-1449-2>
79. PHILIPP, A., BARTHOLY, J., BECK, C., ERPICUM, M., ESTEBAN, P., FETTWEIS, X., HUTH, R., JAMES, P., JOURDAIN, S., KREIENKAMP, F., KRENNERT, T., LYKOUDIS, S., MICHALIDES, S., PIANKO, K., POST, P., RASILLA ÁLVAREZ, D., SCHIEMANN, R., SPEKAT, A., TYMVIOS, F. S. (2010): COST733cat – A database of weather and circulation type classifications. Physics and Chemistry of the Earth, 35, 9–12, 360–373. <https://doi.org/10.1016/j.pce.2009.12.010>
80. PHILIPP, A., BECK, C., HUTH, R., JACOBEIT, J. (2014): Development and comparison of circulation type classifications using the COST 733 dataset and software. International Journal of Climatology. <https://doi.org/10.1002/joc.3920>
81. PHILIPP, A., DELLA-MARTA, P. M., JACOBEIT, J., FEREDAY D. R., JONES, P. D., MOBERG, A., WANNER, H. (2007): Long-term variability of daily North Atlantic–European pressure patterns since 1850 classified by simulated annealing clustering. Journal of Climate, 20, 16, 4065–4095. <https://doi.org/10.1175/JCLI4175.1>
82. PLAVCOVÁ, E., KYSELÝ, J. (2011): Evaluation of daily temperatures in Central Europe and their links to large-scale circulation in an ensemble of regional climate models. Tellus 63A, 4, 763–781. <https://doi.org/10.1111/j.1600-0870.2011.00514.x>
83. PLAVCOVÁ, E., KYSELÝ, J. (2012): Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data. Climate Dynamics, 39, 7–8, 1681–1695. <https://doi.org/10.1007/s00382-011-1278-8>
84. PLAVCOVÁ, E., KYSELÝ, J. (2013): Projected evolution of circulation types and their temperatures over Central Europe in climate models. Theoretical and Applied Climatology, 114, 3–4, 625–634. <https://doi.org/10.1007/s00704-013-0874-4>
85. REIN, F. (1959): Typizace počasí podle zásad dynamické klimatologie. Hydrometeorologický ústav, Brno.
86. RICHMAN, M. B. (1986): Rotation of principal components. Journal of Climatology, 6, 3, 293–335. <https://doi.org/10.1002/joc.3370060305>
87. SANDEV, M., ŠEDIVKA, J. (2002): Porovnání zim 1989–2001 s normálem 1961–1990 v České republice. Meteorologické zprávy, 55, 5, 129–135.
88. SCHWARTZ, M. D. (1996): An air mass-based approach to regional GCM validation. Climate Research, 6, 3, 227–235. <https://doi.org/10.3354/cr006227>
89. SHERIDAN, S. C., LEE, C. C. (2010): Synoptic climatology and the general circulation model. Progress in Physical Geography, 34, 1, 101–109. <https://doi.org/10.1177/0309133309357012>
90. SHERIDAN, S. C., LEE, C. C. (2011): The self-organizing map in synoptic climatological research. Progress in Physical Geography, 35, 1, 109–119. <https://doi.org/10.1177/0309133310397582>
91. SLABÝ, S. (1989): Četnosti povětrnostních situací na území ČSSR. Meteorologické zprávy, 42, 3, 69–72.
92. STARÝ, J. (1989): Rozbor výskytu povětrnostních situací a počasí s nimi spojeného. Sborník prací ČHMÚ, Sv. 35. Hydrometeorologický ústav, Praha.
93. STEHLÍK, J. (2002): Objektivní klasifikace cirkulačních typů pro území České republiky. Meteorologické zprávy, 55, 2, 40–49.
94. ŠÁLEK, M., RADA, J., KRÁL, D. (2006): Vliv automatizace a informačních technologií na meteorologickou předpovědní praxi. Meteorologické zprávy, 59, 6, 172–182.
95. ŠIMEK, M. (2000): Větrné poměry letiště Brno-Tuřany a jejich vliv na letový provoz. Meteorologické zprávy, 53, 1, 16–22.
96. TOLASZ, R. a kol. (2007): Atlas podnebí Česka 1961–2000. Český hydrometeorologický ústav, Univerzita Palackého v Olomouci, Praha, Olomouc.
97. VRAC, M., HAYHOE, K., STEIN, M. (2007): Identification and intermodel comparison of seasonal circulation patterns over North America. International Journal of Climatology, 27, 5, 603–620. <https://doi.org/10.1002/joc.1422>
98. WEUSTHOFF, T. (2011): Weather type classification at MeteoSwiss – Introduction of new automatic classifications schemes. Arbeitsberichte der MeteoSchweiz, č. 235. MeteoSchweiz, Zürich.
99. YARNAL, B. (1974): Relationships between synoptic-scale atmospheric circulation and glacier mass balance in South-Western Canada during the International Hydrological Decade, 1965–74. Journal of Glaciology, 30, 105, 188–198. <https://doi.org/10.1017/S002214300000592X>
100. YARNAL, B., WHITE, D. A. (1987): Subjectivity in a computer-assisted synoptic climatology I: Classification results. Journal of Climatology, 7, 2, 119–128. <https://doi.org/10.1002/joc.3370070203>
101. ŻMUDZKA, E. (2013): The influence of circulation patterns on extreme thermal resources in the growing season and the period of active plant growth in Poland (1951–2006). Meteorologische Zeitschrift, 22, 5, 541–549. <https://doi.org/10.1127/0941-2948/2013/0447>
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive