Geografie 2015, 120, 422-443

https://doi.org/10.37040/geografie2015120030422

Land use changes in Prague suburban area according to different prediction modelling approaches

Magdalena Indrová, Lucie Kupková

Univerzita Karlova v Praze, Přírodovědecká fakulta, katedra kartografie a geoinformatiky, Albertov 6, 128 43 Praha 2, Czechia

Received March 2014
Accepted July 2015

References

1. AGARWAL, C. a kol. (2001): A Review and Assessment of Land Use Change Models. Dynamics of Space, Time, and Human Choice. Indiana University and USDA Forest Service, Newton square, 61 s.
2. ALMEIDA, C. M. a kol. (2008): Using neural networks and cellular automata for modelling intra-urban land-use dynamics. International Journal of Geographical Information Science, 22, č. 9, s. 943–963. <https://doi.org/10.1080/13658810701731168>
3. ASPINALL, R. J., HILL, M. J., eds. (2008): Land Use Change. Science, Policy and Management. Boca Raton, FL, USA, xxvii + 185 s.
4. BATTY, M. (2009): Urban Modeling. International Encyclopedia of Human Geography. Oxford: Elsevier, s. 51–58.
5. BIČÍK, I., JELEČEK, L. (2009): Land use and landscape changes in Czechia during the period of transformation 1990–2007. Geografie, 114, č. 4, s. 263–281.
6. BROWN, D. a kol. (2004): Modeling land use and land-cover chase, http://www-personal.umich.edu/~danbrown/papers/lcluc_book.pdf/> (15. 7. 2012).
7. CLARKE, K. C. HOPPEN, S., GAYDOS, L. (1997): A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24, s. 247–226. <https://doi.org/10.1068/b240247>
8. EL KHOURY, A. (2012): Modeling Land-Use Changes in the South Nation Watershed using Dyna-CLUE. University of Ottawa, Ottawa, http://www.ruor.uottawa.ca/en/bitstream/handle/10393/22902/El%20Khoury_Antoun_2012_Thesis.pdf?sequence=1/ (18. 8. 2012).
9. ENGELEN, G. a kol. (1995): Using cellular automata for integrated modelling of socioenvironmental systems. Environmental Monitoring and Assessment, 34, s. 203–214. <https://doi.org/10.1007/BF00546036>
10. FAWCETT, T. (2006): An introduction to ROC analysis. Pattern Recognition Letters, č. 27, s. 861–874. <https://doi.org/10.1016/j.patrec.2005.10.010>
11. GRILL, S., VOREL, J., MAIER, K., ČTYROKÝ, J., DRDA, F. (2008): Simulation and assessment model of urban development. In: GIS Ostrava 2008. Ostrava, http://gis.vsb.cz/ GIS_Ostrava/GIS_Ova_2008/sbornik/Lists/Papers/042.pdf, s. 1–11.
12. HENRÍQUEZ, C. a kol. (2010): Mapping Urban Change to Plan the Future: Maputo City Change Model and the Municipal Structure Plan Remote Sensing for Science, Education, and Natural and Cultural Heritage, 3, s. 139–146.
13. HU, Z. Y., LO, C. P. (2007): Modeling urban growth in Atlanta using logistic regression. Computers. Environment and Urban Systems, 29, s. 291–298.
14. INDROVÁ, M. (2012): Srovnání možností software Dyna-CLUE a Land Change Modeler pro predikční modelování suburbánního rozvoje modelového území v zázemí Prahy. Diplomová práce. Univerzita Karlova v Praze, Praha, 93 s.
15. JELEČEK, L., CHROMÝ, P., JANÁČ, J. (2010): LUCC in East Central and Southeast Europe post-communist countries from 1960s to the end of the 20th century and its historicgeographical roots. AUC–Geographica, 45, č. 2, s. 19–30.
16. KABRDA, J., JANČÁK, V. (2007): Vliv vybraných politických a institucionálních faktorů na české zemědělství a krajinu. Geografie, 112, č. 1, s. 48–60.
17. KHOI, D. D., MURAYAMA, Y. (2010): Forecasting Areas Vulnerable to Forest Conversion in the Tam Dao National Park Region, Vietnam. Remote Sensing, 2, č. 5, s. 1249–1272. <https://doi.org/10.3390/rs2051249>
18. LAMBIN, E. F., GEIST, H. J., eds. (2006): Land-Use and Land-Cover Change. Local Processes nad Global Impacts. Springer, 222 s.
19. LAMBIN, E. F., ROUNSEVELL, M. D. A., GEIST, H. J. (2000): Are agricultural land-use models able to predict changes in land-use intensity? Agriculture, Ecosystems & Environment, 82, č. 1–3, s. 321–331. <https://doi.org/10.1016/S0167-8809(00)00235-8>
20. LI, X., YEH, A. G. O. (2002): Neural-network-based cellular automata for simultaning multiple land use change using GIS. International Journal of Geographical Information Science, 16, č. 4, s. 323–343. <https://doi.org/10.1080/13658810210137004>
21. LIU, M. a kol. (2009): Land use and land cover change analysis and prediction in the Upper Reaches of the Minjiang river, China. Environmental Management, 43, s. 899–907. <https://doi.org/10.1007/s00267-008-9263-7>
22. LÓPEZ, E. a kol. (2001): Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico. Landscape and Urban Planning, 55, č. 4, s. 271–285. <https://doi.org/10.1016/S0169-2046(01)00160-8>
23. MALACH, Š. (2009): Zkušenosti s Land Change Modelerem (LCM) při analýze a predikci změn ve využití půdy. In: Misáková, L., Klimánek, M. (ed.): 10. seminář uživatelů IDRISI. 1., Brno: Mendelova zemědělská a lesnická univerzita v Brně, s. 36–48.
24. MANANDHAR, R., ODEH, I., ANCEV, T. (2006): Modelling of spatio-temporal expansion of built-up and residential-commercial dwellings and their socioeconomic implication in the lower hunter of NSW, Australia. Proceedings of the Surveying & Spatial Sciences Institute Biennial International Conference Adelaide, Surveying & Spatial Sciences Institute, s. 101–108.
25. MORÁVEK, A. (2011): Analysis and modelling of landcover changes in a mountain area: the Barcelonnette basin, South French Alps. Strasbourg, Diplomová práce, Universite de Strasbourg, 110 s.
26. PIJANOWSKI, B. C. a kol. (2002): Using neural networks and GIS to forecast land use changes: a Land transformation Model. Computers, Environment and Urban System, 26, č. 6, s. 553–575. <https://doi.org/10.1016/S0198-9715(01)00015-1>
27. POINTUS, R. G., MALANSON, J. (2005): Comparison of the structure and accuracy of two land change models. International Journal of Geographical Information Science, 19, č. 2, s. 243–265. <https://doi.org/10.1080/13658810410001713434>
28. RAFIEE, R. a kol. (2009): Simulating urban growth in Mashad City, Iran through the SLEUTH model (UGM). Cities, č. 26, s. 19–26. <https://doi.org/10.1016/j.cities.2008.11.005>
29. SILVA, E. A., CLARKE, K. C. (2002): Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban systems, 26, s. 525–552. <https://doi.org/10.1016/S0198-9715(01)00014-X>
30. STRAKOVÁ, J. (2009): Applicability of the EURURALIS Scenarios at the Fine Spatial Scales. Diplomová práce. JČU, České Budějovice, 81 s.
31. TEWOLDE, M. G. (2011): Urban Sprawl Analysis and Modeling in Asmara, Eritrea: Application of Geospatial Tools. Eritrea. Diplomová práce. Hamelmalo Agricultural College, 91 s.
32. TEWOLDE, M. G., CABRAL, P. (2011): Urban Sprawl Analysis and Modeling in Asmara, Eritrea. Remote Sensing, 3, č. 10, s. 2148–2165. <https://doi.org/10.3390/rs3102148>
33. TRISURAT, Y., ALKEMADE, R., VERBURG, P. H. (2010): Projecting land use change and its consequences for biodiversity in Northern Thailand. Environmental Management, 45, s. 626–639. <https://doi.org/10.1007/s00267-010-9438-x>
34. VERBURG, P. H. a kol. (2004): Land use change modelling: current practice and research priorities. Geojournal, 61, č. 4, s. 309–324. <https://doi.org/10.1007/s10708-004-4946-y>
35. VERBURG, P. H., OVERMARS, K. P. (2009): Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecology, 24, s. 1167–1181. <https://doi.org/10.1007/s10980-009-9355-7>
36. VERBURG, P. H. (2010): The CLUE model. Course material. VU Amsterdam. Institute for Environmental Studies, http://www.ivm.vu.nl/en/Images/Exercises_tcm53-284019.pdf, 53 s. (2. 2. 2015).
37. WENG, Q. (2002): Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. Journal of Environmental Management, č. 64, s. 273–284. <https://doi.org/10.1006/jema.2001.0509>
38. WHITE, R., ENGELEN, G. (1993): Cellular automata and fractal urban form: a cellularmodelling approach to the evolution of urban land-use patterns. Environment and Planning A, 25, č. 8, s. 1175–1199. <https://doi.org/10.1068/a251175>
39. WOLFRAM, S. (1984): Cellular automata as models of complexity. Nature, 311, č. 5985, s. 419–424. <https://doi.org/10.1038/311419a0>
40. ZHANG, Q. a kol. (2011): Simulation and analysis of urban growth scenarios for the Greater Shanghai Area, China. Computers, Environment and Urban Systems, 35, s. 126–139. <https://doi.org/10.1016/j.compenvurbsys.2010.12.002>
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive