Geografie 2015, 120, 50-63
https://doi.org/10.37040/geografie2015120010050
Factors, determining the origin of debris flows on the southern slopes of the Crimean Mountains
References
1. 1971): Dendrochronological interpretation of geomorphic processes. Fennia, 105, s. 1–139.
, J. (
2. 1954): Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings of the Royal Society A, 225, s. 49–63.
, R. A. (
3. 2005): Phototropic response induced by wind loading in Maritime pine seedlings (Pinus pinaster Aït.). Journal of Experimental Botany, 56, s. 851–856.
< , S., STOKES, A. (https://doi.org/10.1093/jxb/eri071>
4. 2010a): Changes and trends in debris-flow frequency since A.D. 1850: results from the Swiss Alps. Holocene, 20, s. 907–916.
< , M., STOFFEL, M. (https://doi.org/10.1177/0959683610365942>
5. 2010b): Tree rings and debris flows: recent developments, future directions. Progress in Physical Geography, 34, s. 625–645.
< , M., STOFFEL, M. (https://doi.org/10.1177/0309133310370283>
6. 2007): Reconstructing spatio-temporal patterns of debris-flow activity using dendrogeomorphological methods. Geomorphology, 87, s. 337–351.
< , M., STOFFEL, M., EHMISCH, M., MONBARON, M. (https://doi.org/10.1016/j.geomorph.2006.10.002>
7. 1999): The role of debris supply conditions in predicting debris flow activity. Earth Surface Processes and Landforms, 24, s. 1039–1054.
< , M. J., JAKOB, M. (https://doi.org/10.1002/(SICI)1096-9837(199910)24:11<1039::AID-ESP29>3.0.CO;2-U>
8. COOK, E. R. (1985): A time series analysis approach to tree-ring standardization, PhD Dissertation, University of Arizona, Tucson, USA, 175 s.
9. DERENYUK, N. E., VANINA, M. V., GERASIMOV, M. Y., PIROVAROV, S. V. (1984): Geological map of the Crimea. Geological Ministry of Ukraine, Kyjev, měřítko 1 : 200 000.
10. 2011): Rainfall-related debris flows in Carhuacocha Valley, Cordillera Huayhuash, Peru. Landslides, 8, s. 269–278.
< , Z., ČESÁK, J., RIOS ESCOBAR, V. (https://doi.org/10.1007/s10346-011-0259-7>
11. 2007): Alpine debris flow triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado. Geomorphology, 84, s. 80–97.
< , J., W., COE, J. A. (https://doi.org/10.1016/j.geomorph.2006.07.009>
12. HOLMES, R. (1994): Dendrochronology Program Library User’s Manual, Laboratory of Tree- Ring Research University of Arizona, Tucson, 51 s.
13. 2006): Detailed debris flow hazard assesment in Andorra: A multidisciplinary approach. Geomorphology, 78, s. 359–372.
< , M., COPONS, R., ALTIMIR, J. (https://doi.org/10.1016/j.geomorph.2006.02.003>
14. 1983): Debris flows. Progress in Physical Geography, 7, s. 469–501.
< , J. L. (https://doi.org/10.1177/030913338300700401>
15. 1997): The physics of debris flows. Reviews of Geophysics, 35, s. 245–296.
< , R. M. (https://doi.org/10.1029/97RG00426>
16. 2005): Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview. Natural Hazards and Earth System Sciences, 5, s. 527–554.
< , A., HUGGEL, C., FISCHER, L., GUEX, S., PAUL, F., ROER, I., SALZMANN, N., SCHLAEFLI, S., SCHMUTZ, K., SCHNEIDER, S., STROZZI, T., WEIDMANN, Y. (https://doi.org/10.5194/nhess-5-527-2005>
17. 1991): On the age of debris flows in the Tatra Mountains. Studia Geomorphologica Carpatho-Balcanica, 23, s. 139–152.
, A. (
18. 2010): Rock-glacier dynamics and magnitude-frequency relations of debris flows in a high-elevation watershed: Ritigraben, Swiss Alps. Global and Planetary Change, 73, s. 202–210.
< , R., STOFFEL, M. (https://doi.org/10.1016/j.gloplacha.2010.06.004>
19. 2009): Dendrochronological records of debris flow and avalanche activity in a mid-mountain forest zone (eastern Sudetes – cental Europe). Geochronometria, 34, s. 57–66.
< , I., OWCZAREK, P. (https://doi.org/10.2478/v10003-009-0011-7>
20. 2008): Frost weathering and rockwall erosion in the southeastern Swiss Alps: Long-term (1994–2006) observations. Geomorphology, 99, 1–4, s. 353–368.
< , N. (https://doi.org/10.1016/j.geomorph.2007.11.013>
21. 2008): Contrasting rainfall generated debris flows from adjacent watersheds at Forest Falls, Southern California, USA. Geomorphology, 96, s. 322–338.
< , D. M., ALVAREZ, R. M., RUPPERT, K. R., GOFORTH, B. (https://doi.org/10.1016/j.geomorph.2007.03.021>
22. 2012): Characterization of debris flows by rainstorm condition at a torrent on the Mount Yakedake volcano, Japan. Geomorphology, 136, s. 88–94.
< , K., SUWA, H., KANNO, T. (https://doi.org/10.1016/j.geomorph.2011.04.006>
23. 2008): Gigantic low-gradient landslides in the northern periphery of the Crimean Mountains (Ukraine). Geomorphology, 95, s. 449–473.
< , T., HRADECKÝ, J., SMOLKOVÁ, V., ŠILHÁN, K. (https://doi.org/10.1016/j.geomorph.2007.07.007>
24. 2009): Time constraints for the evolution of a large slope collapse in karstified mountainous terrain of the southwestern Crimean Mountains, Ukraine. Geomorphology, 108, s. 171–181.
< , T., HRADECKÝ, J., ŠILHÁN, K., SMOLKOVÁ, V., ALTOVÁ, V. (https://doi.org/10.1016/j.geomorph.2009.01.003>
25. 2008): Frequency of debris flows and their relation with precipitation: A case study in the Central Alps, Italy. Geomorphology, 101, s. 721–730.
< , M., SANTILLI, M. (https://doi.org/10.1016/j.geomorph.2008.04.002>
26. 2006): Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps – A dendrogeomorphological case study. Geomorphology, 74, s. 219–231.
< , S., STOFFEL, M., KIENHOLZ, H. (https://doi.org/10.1016/j.geomorph.2005.08.009>
27. 2011): A regional reconstruction of debris-flow activity in the Northern Calcareous Alps, Austria. Geomorphology, 132, s. 41–50.
< , E., BOLLSCHWEILER, M., STOFFEL, M., NEUMANN, M. (https://doi.org/10.1016/j.geomorph.2011.04.035>
28. 2015): Using local archive sources to reconstruct historical landslide occurrence in selected urban regions of the Czech Republic: examples from regions with different historical development. Land Degradation and Development, 26, s. 142–157.
< , P., KLIMEŠ, J., DUBIŠAR, J. (https://doi.org/10.1002/ldr.2192>
29. 1999): Empirical relationships for debris flows. Natural Hazards, 19, s. 47–77.
< , D. (https://doi.org/10.1023/A:1008064220727>
30. 2006): Recent catastrophic debris flows in Chile: Geological hazard, climatic relationships and human response. Quaternary International, 158, s. 83–95.
< , S. A., BEBOLLEDO, S., VARGAS, G. (https://doi.org/10.1016/j.quaint.2006.05.031>
31. 1978): Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quaternary Research, 9, s. 168–185.
< , J. F. (https://doi.org/10.1016/0033-5894(78)90065-0>
32. 2010): Magnitude–frequency relationships of debris flows – A case study based on field surveys and tree-ring records. Geomorphology, 116, s. 67–76.
< , M. (https://doi.org/10.1016/j.geomorph.2009.10.009>
33. 2008): Tree-ring analysis in natural hazards research – an overview. Natural hazards and earth system sciences, 8, č. 2, s. 187–202.
< , M., BOLLSCHWEILER, M. (https://doi.org/10.5194/nhess-8-187-2008>
34. 2009): What Tree Rings Can Tell About Earth- Surface Processes: Teaching the Principles of Dendrogeomorphology. Geography Compass 3, s. 1013–1037.
< , M., BOLLSCHWEILER, M. (https://doi.org/10.1111/j.1749-8198.2009.00223.x>
35. 2011): Rainfall characteristics for periglacial debris flows in the Swiss Alps: past incidences-potential future evolutions. Climate Change, 105, s. 263–280.
< , M., BOLLSCHWEILER, M., BENISTON, M. (https://doi.org/10.1007/s10584-011-0036-6>
36. 2010): Debris-flow activity and snow avalanches in a steep watershed of the Valais Alps (Switzerland): Dendrogeomorphic event reconstruction and identification of triggers. Geomorphology, 116, s. 107–114.
< , S., BOLLSCHWEILER, M., STOFFEL, M., DIKAU, R. (https://doi.org/10.1016/j.geomorph.2009.10.012>
37. 1997): Dating of geomorphological processes using dendrogeomorphological methods. Catena, 31, s. 137–151.
< , H. (https://doi.org/10.1016/S0341-8162(97)00031-3>
38. 2014): Chronology of processes in high-gradient channels of medium-high mountains and their influence on alluvial fans properties. Geomorphology, 206, s. 288–298.
< , K. (https://doi.org/10.1016/j.geomorph.2013.09.032>
39. 2010): Fossil and recent debris flows in medium-high mountains (Moravskoslezské Beskydy Mts, Czech Republic). Geomorphology, 124, č. 3–4, s. 238–249.
< , K., PÁNEK, T. (https://doi.org/10.1016/j.geomorph.2010.03.026>
40. 2011): Evaluation of meteorological controls of reconstructed rockfall activity in the Czech Flysch Carpathians. Earth Surface Processes and Landforms, 36, s. 1898–1909.
< , K., BRÁZDIL, R., PÁNEK, T., DOBROVOLNÝ, P., KAŠIČKOVÁ, L., TOLASZ, R., TURSKÝ, O., VÁCLAVEK, M. (https://doi.org/10.1002/esp.2211>
41. 2012): Tree-ring analysis in the reconstruction of slope instabilities associated with earthquakes and precipitation (the Crimean Mountains, Ukraine). Geomorphology, 173–174, s. 174–184.
< , K., PÁNEK, T., HRADECKÝ, J. (https://doi.org/10.1016/j.geomorph.2012.06.010>
42. 2013): Implications of spatial distribution of rockfall reconstructed by dendrogeomorphological methods. Natural Hazards and Earth System Sciences, 13, s. 1817–1826.
< , K., PÁNEK, T., HRADECKÝ, J. (https://doi.org/10.5194/nhess-13-1817-2013>
43. 2015): Tree-age control on debris flow frequencies based on dendrogeomorphology: examples from a regional reconstruction in the Crimean Mountains. Earth Surface Processes and Landforms, 40, s. 243–251.
< , K., PÁNEK, T., HRADECKÝ, J., STOFFEL, M. (https://doi.org/10.1002/esp.3623>
44. V.I.A.S. (2005): Vienna Institute of Archaeological Science: Time Table. Installation and instruction manual. Ver. 2.1, Vienna.
45. 2003): Debris flows in Glacier National Park, Montana: geomorphology and hazards. Geomorphology, 55, s. 317–328.
< , F. D., SCHMIDT, G. L. (https://doi.org/10.1016/S0169-555X(03)00147-8>
46. 1997): Dendrochronological analysis of debris flow disturbance on Rishiri Island. Geomorphology, 20, s. 135–145.
< , K., KIKUCHI, S., NAKANUTA, F., NODA, M. (https://doi.org/10.1016/S0169-555X(97)00010-X>