Geografie 2014, 119, 1-25

https://doi.org/10.37040/geografie2014119010001

Application of spatial weather generator for the assessment of climate change impacts on a river runoff

Leszek Kuchar1, Sławomir Iwański1, Leszek Jelonek2, Wiwiana Szalińska2

1Wroclaw University of Environmental and Life Science, Department of Mathematics, Grunwaldzka 53, 50-357 Wroclaw, Poland
2Institute of Meteorology and Water Management, National Research Institute, Parkowa 30, 51-616 Wroclaw, Poland

Received February 2013
Accepted February 2014

References

1. ARNELL, N.W. (2003): Relative effects of multi-decadal climatic variability and changes in the mean and variability of climate due to global warming: future streamflows in Britain. Journal of Hydrology, 270, No. 3–4, pp. 195–213. <https://doi.org/10.1016/S0022-1694(02)00288-3>
2. BATES, B.C., KUNDZEWICZ, Z.W., WU, S., PALUTIKOF, J.P. (2008): Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, 210 pp.
3. BARDOSSY A., PLATE, E.J. (1992): Space-time model for daily rainfall using atmospheric circulation patterns. Water Resources Research, 28, pp. 1247–1259. <https://doi.org/10.1029/91WR02589>
4. BARNETT, T., MALONE, T., PENNELL, W., STAMMER, D., SEMTNER, B., WASHINGTON, W. (2004): The effects of climate change on water resources in the west: introduction and overview. Clim Change, 62, pp. 1–11. <https://doi.org/10.1023/B:CLIM.0000013695.21726.b8>
5. BAVAY, M., LEHNING, M., JONAS, T., LÖWE, H. (2009): Simulations of future snow cover and discharge in Alpine headwater catchments. Hydrol Process, 23, pp. 95–108. <https://doi.org/10.1002/hyp.7195>
6. BEERSMA, J.J., BUISHAND, T.A. (2003): Multi-site simulation of daily precipitation and temperature conditional on the atmospheric circulation. Climate Research, 25, pp. 121–133. <https://doi.org/10.3354/cr025121>
7. BELLONE, E., HUGHES, J.P., GUTTORP, P. (2000): A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts. Climate Res., 15, pp. 1–12. <https://doi.org/10.3354/cr015001>
8. BERGSTRÖM, S., CARLSSON, B., GARDELIN, M., LINDSTRÖM, G., PETTERSSON, A., RUMMUKAINEN, M. (2001): Climate change impacts on run-off in Sweden—assessments by global climate models, dynamical downscaling and hydrological modeling. Clim Res, 16, pp. 101–112. <https://doi.org/10.3354/cr016101>
9. BLACK, J.N., BONYTHON, C.W., PRESCOTT, J.A. (1954): Solar radiation and the duration of sunshine. Quarterly Journal of the Royal Meteorological Society, 80, No. 344, pp. 231–235. <https://doi.org/10.1002/qj.49708034411>
10. BOER, G.J., ARPE, K., BLACKBURN, M., DEQUE, M., GATES, W.L., HART, T.L., LE TREUT, H., ROECKNER, H.E., SHEININ, D.A., SIMMONDS, I., SMITH, R.N.B., TOKIOKA, T., WETHERALD, R.T., WILLIAMSON, D. (1992): Some results from an intercomparison of climates simulated by 14 atmospheric general circulation models. J. Geophys. Res., 97, pp. 12771–12786. <https://doi.org/10.1029/92JD00722>
11. BOER, G.J., FLATO, G., READER, M.C., RAMSDEN, D. (2000a): A transient climate change simulation with greenhouse gas and aerosol forcing: experimental design and comparison with the instrumental record for the 20th century. Clim. Dyn., 16, pp. 405–425. <https://doi.org/10.1007/s003820050337>
12. BOER, G.J., FLATO, G., RAMSDEN, D. (2000b): A transient climate change simulation with greenhouse gas and aerosol forcing: projected climate for the 21st century. Clim. Dyn., 16, pp. 427–450. <https://doi.org/10.1007/s003820050338>
13. BRISSETTE F., KHALILI M., LECONTE R. (2007) Efficient stochastic generation of multisite synthetic precipitation data. J Hydrol, 345, No. 3–4, pp. 121–133. <https://doi.org/10.1016/j.jhydrol.2007.06.035>
14. BUISHAND, T.A., BRANDSMA, T. (2001): Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest neighbour resampling. Water Resour Res, 37, No. 11, pp. 2761–2776. <https://doi.org/10.1029/2001WR000291>
15. BURLANDO, P., ROSSO, R. (2002): Effects of transient climate change on basin hydrology. 1. Precipitation scenarios for the Arno river, central Italy. Hydrol Process, 16, pp. 1151–1175. <https://doi.org/10.1002/hyp.1055>
16. CHEN, J., BRISSETTE, F.P., LECONTE, R. (2011): Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. Journal of Hydrology, 401, No. 3–4, pp. 190–202. <https://doi.org/10.1016/j.jhydrol.2011.02.020>
17. CHIEW, F.H.S., MCMAHON, T.A. (2002): Modeling the impacts of climate change on Australian streamflow. Hydrol Processes, 16, pp. 1235–1245. <https://doi.org/10.1002/hyp.1059>
18. CHRISTENSEN, N.S., WOOD, A.W., VOISIN, N., LETTENMAIER, D.P., PALMER, R.N. (2004): Effects of climate change on the hydrology and water resources of the Colorado river basin. Climatic Change, 62, pp. 337–363. <https://doi.org/10.1023/B:CLIM.0000013684.13621.1f>
19. DIBIKE, Y.B., COULIBALY, P. (2005): Hydrologic Impact of Climate Change in the Saguenay Watershed: Comparison of Downscaling Methods and Hydrologic Models. Journal of Hydrology, 307, No. 1–4, pp. 145–163. <https://doi.org/10.1016/j.jhydrol.2004.10.012>
20. FATICHI, S., IVANOV, V.Y., CAPORALI, E. (2011): Simulation of future climate scenarios with a weather generator. Advances in Water Resources, 34, No. 4, pp. 448–467. <https://doi.org/10.1016/j.advwatres.2010.12.013>
21. GATES, W.L. (1985): The use of general circulation models in the analysis of the ecosystem impacts of climatic change. Clim. Change, 7, pp. 267–284. <https://doi.org/10.1007/BF00144171>
22. GLEICK, P.H. (1993): Water in the 21st century. In: Gleick PH (ed) Water in crisis: a guide to the world’s fresh water resources. Oxford University Press, Oxford, pp. 105–113.
23. GROTCH, S.L., MAC CRACKEN, M.C. (1991): The use of general circulation models to predict regional climate change. J. Climate, 4, pp. 286–303. <https://doi.org/10.1175/1520-0442(1991)004<0286:TUOGCM>2.0.CO;2>
24. HAGG, W., SHAHGEDANOVA, M., MAYER, C., LAMBRECHT, A. POPOVNIN, V. (2010): A sensitivity study for water availability in the Northern Caucasus based on climate projections. Global and Planetary Change, 73, No. 3–4, pp. 161–171. <https://doi.org/10.1016/j.gloplacha.2010.05.005>
25. HAVNØ, K., MADSEN, M.N., DØRGE, J. (1995): MIKE 11 – a generalized river modelling package. In: Singh, V.P. (ed.): Computer models of Watershed Hydrology. Water Resources Publications, Colorado, pp. 733–782.
26. HUGHES, J.P., GUTTORP, P. (1994): A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resourc. Res., 27, pp. 493–501.
27. HUGHES, J.P., GUTTORP, P., CHARLES, S. (1999): A nonhomogeneous hidden Markov model for precipitation occurrence. Appl Stat, 48, pp. 15–30.
28. IPCC SRES SPM (2000): “Summary for Policymakers”, Emissions Scenarios: A Special Report of IPCC Working Group III, IPCC, ISBN 92-9169-113-5.
29. IPCC (2007): Climate change 2007: the physical science basis, contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York.
30. IWANSKI, S., KUCHAR, L. (2003): Spatial generation of daily meteorological data. Acta Scientiarum Polonorum – Formatio Circumiectus, 2, No. 1, pp. 113–121.
31. KATZ, R.W. (1996): Use of conditional stochastic models to generate climate change scenarios. Clim. Change, 35, pp. 397–414.
32. KHALILI, M., LECONTE, R., BRISSETTE, F. (2007): Stochastic multi-site generation of daily precipitation data using spatial autocorrelation. J Hydrometeorol, 8, No. 3, pp. 396–412. <https://doi.org/10.1175/JHM588.1>
33. KHALILI, M., BRISSETTE, F., LECONTE, R. (2009): Stochastic Multi-Site Generation of Daily Weather Data. Journal of Stochastic Environmental Research and Risk Assessment, 23, No. 6, pp. 837–849. <https://doi.org/10.1007/s00477-008-0275-x>
34. KILSBY, C.G., TELLIER, S.S., FOWLER, H.J., HOWELS, T.R. (2007): Hydrological impacts of climate change on the Tejo and Guadiana rivers. Hydrol Earth Syst Sci, 11, No. 3, pp. 1175–1189. <https://doi.org/10.5194/hess-11-1175-2007>
35. KUCHAR, L. (2004): Using WGENK to generate synthetic daily weather data for modelling of agricultural processes. Math. Comput. Symul. 65, pp. 69–75. <https://doi.org/10.1016/j.matcom.2003.09.009>
36. KUNDZEWICZ, Z.W. (2011) Zmiany klimatu, ich przyczyny i skutki – obserwacje i projekcje (Climate changes, their reasons and effects – observations and projections). Landform Analysis, 15, pp. 39–49.
37. LEANDER, R., BUISHAND, A.T. (2007): Resampling of regional climate model output for the simulation of extreme river flows. Journal of Hydrology, 332, No. 3–4, pp. 487–496. <https://doi.org/10.1016/j.jhydrol.2006.08.006>
38. LUDWIG, R., MAY, I., TURCOTTE, R., VESCOVI, L., BRAUN, M., CYR, J-F., FORTIN, L-G., CHAUMONT, D., BINER, S., CHARTIER, I., CAYA, D., MAUSER, W. (2009). The role of hydrological model complexity and uncertainty in climate change impact assessment. Advances in Geosciences, 21, pp. 63–71. <https://doi.org/10.5194/adgeo-21-63-2009>
39. ŁUPIKASZA EWA, B., HANSEL, S., MATSCHULLAT, J. (2011): Regional and seasonal variability of extreme precipitation trends in southern Poland and central-eastern Germany 1951–2006 Int. J. Climatol., 31, pp. 2249–2271. <https://doi.org/10.1002/joc.2229>
40. MADSEN, H. (2000): Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. Journal of Hydrology, 235, pp. 276–288. <https://doi.org/10.1016/S0022-1694(00)00279-1>
41. MAJEWSKI, W., WALCZYKIEWICZ, T., red. (2012): KLIMAT Tom 4. Zrównoważone gospodarowanie zasobami wodnymi oraz infrastrukturą hydrotechniczną w świetle prognozowanych zmian klimatycznych. Instytut Meteorologii i Gospodarki Wodnej, Państwowy Instytut Badawczy, Warszawa, 315 s.
42. MANABE, S., STOUFFER, R.J., SPELMAN, M.J., BRYAN, K. (1991): Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I: annual mean response. J. Climate, 4, pp. 785–818. <https://doi.org/10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2>
43. MERRITT, W.S., ALILA, Y., BARTON, M., TAYLOR, B., COHEN, S., NEILSEN, D. (2006): Hydrologic response to scenarios of climate change in sub watersheds of the Okanagan basin, British Columbia. Journal of Hydrology, 326, pp. 79–108. <https://doi.org/10.1016/j.jhydrol.2005.10.025>
44. MIKE 11 (2003): A modelling system for Rivers and Channels, User Guide. DHI Water & Environment.
45. MÜLLER-WOHLFEIL, D.I., BÜRGER, G., LAHMER., W. (2000): Response of a river catchment to climate change: application of expanded downscaling to northern Germany. Climatic Change, 47, pp. 61–89. <https://doi.org/10.1023/A:1005613306339>
46. NIEDŹWIEDŹ, T., TWARDOSZ, R., WALANUS, A. (2009) Theor. Appl. Climatol., 98, pp. 337–350. <https://doi.org/10.1007/s00704-009-0122-0>
47. NILSEN, S.A., HANSEN, E. (1973): Numerical solution of the rainfall runoff process on a daily basis. Nordic Hydrology, 4., pp. 171–190. <https://doi.org/10.2166/nh.1973.0013>
48. PRUDHOMME, C., REYNARD, N., CROOKS, S. (2002): Downscaling of global climate models for flood frequency analysis: where are we now? Hydrol Processes, 16, pp. 1137–1150. <https://doi.org/10.1002/hyp.1054>
49. QIAN, B., GAMEDA, S., JONG, R., FALLON, P., GORNALL, J. (2010): Comparing scenarios of Canadian daily climate extremes derived using a weather generator. Climate Research, 41, No. 2, pp. 131–149. <https://doi.org/10.3354/cr00845>
50. RICHARDSON, C.W. (1985): Weather simulation for crop management models. Trans. ASAE, 28, pp. 1602–1606. <https://doi.org/10.13031/2013.32484>
51. RICHARDSON, C.W., WRIGHT, D.A. (1984): WGEN: a model for generating daily weather variables. US Department of Agriculture, Agricultural Research Service, ARS-8, 83 pp.
52. RIND, D., GOLDBERG, R., RUEDY, R. (1989): Change in climate variability in the 21st Century. Clim. Change, 14, pp. 5–37. <https://doi.org/10.1007/BF00140173>
53. RUSSELL, G.L., MILLER AND, J.R., RIND, D. (1995): A coupled atmosphere-ocean model for transient climate change studies. Atmosphere-Ocean, 33, pp. 683–730. <https://doi.org/10.1080/07055900.1995.9649550>
54. RUSSELL, G.L., RIND, D. (1999): Response to CO2 transient increase in the GISS coupled model. Regional cooling in a warming climate. J. Climate, 12, pp. 531–539. <https://doi.org/10.1175/1520-0442(1999)012<0531:RTCTII>2.0.CO;2>
55. SHARMA, M., COULIBALY, P., DIBIKE, Y.B. (2011): Assessing the need for downscaling RCM data for hydrologic impact study. ASCE Journal of Hydrologic Engineering. <https://doi.org/10.1061/(ASCE)HE.1943-5584.0000349>
56. SMITH, J.B., PITTS, G.J. (1997): Regional climate change scenarios for vulnerability and adaptation assessments. Climatic Change, 36, pp. 3–21. <https://doi.org/10.1023/A:1005300731681>
57. STOUFFER, R.J., MANABE, S. (1999): Response of a coupled ocean-atmosphere model to increasing atmospheric carbon dioxide: Sensitivity to the rate of increase. J. Climate, 12, pp. 2224–2237. <https://doi.org/10.1175/1520-0442(1999)012<2224:ROACOA>2.0.CO;2>
58. SIVAKUMAR, B. (2011): Global climate change and its impacts on water resources planning and management: assessment and challenges Stoch Environ Res Risk Assess 25, pp. 583–600. <https://doi.org/10.1007/s00477-010-0423-y>
59. SULLIVAN, C.A., MEIGH, J.R. (2005): Targeting attention on local vulnerabilities using an integrated indicator approach: the example of the climate vulnerability index. Water Sci Technol, 51, No. 5, pp. 69–78. <https://doi.org/10.2166/wst.2005.0111>
60. TAE-WOONG, K., HOSUNG, A., GUNHUI, CH. (2007). Stochastic multi-site generation of daily rainfall occurrence in south Florida. J Stoch Environ Res Risk Assess. <https://doi.org/10.1007/s00477-007-0180-8>
61. TEUTSCHBEIN, C., SEIBERT, J. (2010): Regional climate models for hydrological impact studies at the catchment scale: a review of recent modeling strategies. Geography Compass, 4, No. 7, pp. 834–860. <https://doi.org/10.1111/j.1749-8198.2010.00357.x>
62. TEUTSCHBEIN, C., WETTERHALL, F., SEIBERT J. (2011): Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale. Climate Dynamics, 37, No. 9–10, pp. 2087–2105. <https://doi.org/10.1007/s00382-010-0979-8>
63. THOMPSON, J.R. et al. (2012). Modelling the impacts of climate change on upland catchments in southwest Scotland using MIKE SHE and the UKCP09 probabilistic projections. Hydrology Research, 43, No. 4, pp. 507–530. <https://doi.org/10.2166/nh.2012.105>
64. VANO, J.A., VOISIN, N., CUO, L., HAMLET, A.F., ELSNER, M.M., PALMER, R.N., POLEBITSKI, A., LETTENMAIER, D.P. (2010): Climate change impacts on water management in the Puget Sound region, Washington, USA. Climatic Change, 102, pp. 225–260. <https://doi.org/10.1007/s10584-010-9846-1>
65. VARIS, O., KAJANDER, T., LEMMELÄ, R. (2004): Climate and Water: On the search for improved links from climate models to water resources management and vice versa. Climatic Change, 66, No. 3, pp. 321–344. <https://doi.org/10.1023/B:CLIM.0000044622.42657.d4>
66. WETTERHALL, F., BARDOSSY, A., CHEN, D.L., HALLDIN, S., XU, C.Y. (2009): Statistical downscaling of daily precipitation over Sweden using GCM output. Theor Appl Climatol, 96, No. 1–2, pp. 95–103. <https://doi.org/10.1007/s00704-008-0038-0>
67. WIBIG, J., JAKUSIK, E., eds. (2012): KLIMAT Tom 1. Warunki klimatyczne i oceanograficzne w Polsce i na Bałtyku południowym – spodziewane zmiany i wytyczne do opracowania strategii adaptacyjnych w gospodarce krajowej. Instytut Meteorologii i Gospodarki Wodnej-Państwowy Instytut Badawczy, Warszawa, 283 s.
68. WILBY, R.L., HAY, L.E., GUTOWSKI, W.J. JR, ARRITT, R.W., TAKLE, E.S., PAN, Z., LEAVESLEY, G.H., CLARK, M.P. (2000): Hydrological responses to dynamically and statistically downscaled climate model output. Geophys Res Lett, 27, No. 8, pp. 1199–1202. doi:200010.1029/1999GL006078. <https://doi.org/10.1029/1999GL006078>
69. WILBY, R.L., HARRIS, I. (2006): A framework for assessing uncertainties in climate change impacts: low flow scenarios for the River Thames, UK. Water Resour Res 42:W02419. <https://doi.org/10.1029/2005WR004065>
70. WILBY, R.L. (2007): A daily weather generator for use in climate change studies. Environmental Modelling and Software, 22, No. 12, pp. 1705–1719.
71. WILKS, D.S. (1992): Adapting stochastic weather generation algorithm for climate change Studies. Climatic Change, 22, pp. 67–84. <https://doi.org/10.1007/BF00143344>
72. WILKS, D.S. (1998): Multisite generalization of a daily stochastic precipitation generation model. J. Hydrol., 210, pp. 178–191. <https://doi.org/10.1016/S0022-1694(98)00186-3>
73. WILKS, D.S. (2010): Use of stochastic weather generator for precipitation downscaling. Climate Change, 1, pp. 898–907.
74. WOOD, A.W., LEUNG, L.R., SRIDHAR, V., LETTENMAIER, D.P. (2004): Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, pp. 189–216. <https://doi.org/10.1023/B:CLIM.0000013685.99609.9e>
75. YAO, M.S., DEL GENIO, A. (1999): Effects of parameterisation on the simulation of climate changes in the GISS GCM. J. Climate, 12, pp. 761–779. <https://doi.org/10.1175/1520-0442(1999)012<0761:EOCPOT>2.0.CO;2>
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive