Geografie 2012, 117, 170-191

https://doi.org/10.37040/geografie2012117020170

Soil Erosion and Sediment Deposition Modelling at the Small Catchment Scale

Barbora Vysloužilová, Zdeněk Kliment

Univerzita Karlova v Praze, Přírodovědecká fakulta, katedra fyzické geografie a geoekologie, Albertov 6, 128 43, Praha 2, Czechia

Received February 2011
Accepted January 2012

References

1. BEK, S. (2007): Digitální mapování koluvizemí. Magisterská práce. KFGG PřF UK. Praha. 96 s.
2. Digitální datové podklady pro stanici Černičí. VÚMOP, Praha.
3. DE VENTE, J., POESEN, J. (2005): Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth Science Review, 71, s. 95–125. <https://doi.org/10.1016/j.earscirev.2005.02.002>
4. DE VENTE, J., POESEN, J., VERSTRAETEN, G., VAN ROMPAY, A., GOVERS, G. (2008): Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain. Global and Planetary Change, 60, s. 393–415. <https://doi.org/10.1016/j.gloplacha.2007.05.002>
5. DOSTÁL, T. a kol. (2006): Dlouhodobé průměrné hodnoty R faktoru (1962–2001). In: Dostál, T. (ed.): Metody a způsoby predikce povrchového odtoku, erozních a transportních procesů v krajině. Výzkumná zpráva projektu COST 634. FSV KHKI, ČVUT, Praha.
6. Experimentální povodí (2009). http://www.hydromeliorace.cz (12. 12. 2009).
7. FENG, X., WANG, Y., CHEN, L., FU, B., BAI, G. (2010): Modelling soil erosion and its response to land-use change in hilly catchments of the Chinese Loess Plateau. Geomorphology, 118, č. 3–4, s. 239–248. <https://doi.org/10.1016/j.geomorph.2010.01.004>
8. Geography the K. U. Leuven (2010). http://geo.kuleuven.be/geography/modelling/erosion/watemsedem2006 (1.1.2010).
9. GOVERS, G. (1991): Rill erosion on arable land in Central Belgium – Rates, Controls and Predictability. Catena, 18, č. 2, s. 133–155. <https://doi.org/10.1016/0341-8162(91)90013-N>
10. GOVERS, G., POESEN, J. (1988): Assessement for interrill and rill contributions to total soil loss frak an upland field plot. Geomorphology, č. 1, http://skagit.meas.ncsu.edu/~helena/gmslab/denix/usped.html, s. 343–354. <https://doi.org/10.1016/0169-555X(88)90006-2>
11. JANEČEK, M. (2004): Sledování vlivu zemědělského hospodaření na kvalitu vody a množství erozních smyvů. Výroční zpráva za rok 2003. Komplexní řešení problémů hospodaření s půdou, vodou a krajinou. In: Diagnostika erozních procesů a jejich účinků na půdu. Etapa výzkumného záměru MZEM07-99-01-08. VÚMOP, Praha, s. 55–68.
12. JANEČEK, M. a kol. (2007): Ochrana zemědělské půdy před erozí. Metodika. VÚMOP, Praha, 76 s.
13. JOHANOVSKÝ, Z. (2004): Černičí. Metadata výzkumného povodí. VÚMOP, Praha, 43 s.
14. JORDAN, G., VAN ROMPAEY, A., SZILASSI, P., CSILLAG, G., MANNAERTS, CH., WOLDAI, T. (2005): Historical land-use changes and their impact on sediment fluxes in the Balaton Basin (Hungary). Agriculture, Ecosystems and Environment, 108, s. 119–133. <https://doi.org/10.1016/j.agee.2005.01.013>
15. KADLEC (2007): LS-converter. http://www.plaveniny.cz/cz/rusle/ls-converter (1. 3. 2010).
16. KEESTRA, S. D., VAN DAM, O., VERSTRAETEN, G., VAN HUISSTEDEN, J. (2009): Changing sediment dynamics due to natural reforestration in the Dragona catchement SW Slovenia. Catena, 78, s. 60–71. <https://doi.org/10.1016/j.catena.2009.02.021>
17. KLIMENT, Z., KADLEC, J., LANGHAMMER, J. (2008): Evaluation of suspended load changes using AnnAGNPS and SWAT semi-empirical erosion models. Catena, 73, s. 286–299. <https://doi.org/10.1016/j.catena.2007.11.005>
18. KLIMENT, Z., LANGHAMMER, J. (2005): Modelování erozního ohrožení ve velkých územních celcích. In: Rypl, J. (ed.): Geomorfologický sborník, 4, PFJU, České Budějovice, s. 75–81.
19. KRÁSA, J. (2004): Hodnocení erozních procesů ve velkých povodích za podpory GIS. Disertační práce. KHKI FSV ČVUT, Praha, 186 s.
20. KRÁSA, J., DOSTÁL, T., VAN ROMPAY, A., VÁŠKA, J., VRÁNA, K. (2005): Reservoirs siltation measurements and sediment transport assesement in the Czech Republic, the Vrchlice catchment study. Catena, 64, s. 348–362. <https://doi.org/10.1016/j.catena.2005.08.015>
21. MC COOL, D. K. a kol. (1987): Revised slope steepness factor for the Universal Soil Loss Equation. Transactions of the American Society of Agricultural Engineers, 30, č. 5, s. 1387–1396. <https://doi.org/10.13031/2013.30576>
22. MC COOL, D. K. a kol. (1989): Revised slope lenght factor for the Universal Soil Loss Equation. Transactions of the American Society of Agricultural Engineers, 32, č. 5, s. 1571–1576. <https://doi.org/10.13031/2013.31192>
23. MITÁŠ, L., MITÁŠOVÁ, H. (1998): Distributed soil erosion simulation for effective erosion prevention. Water Resources Research, 34, č. 3, s. 505–516. <https://doi.org/10.1029/97WR03347>
24. MITÁŠOVÁ, H., HOFIERKA, J., ZLOCHA, M., IVERSON, L. R. (1996): Modelling topographic potential for erosion and deposition using GIS. International Journal of GIS, 10, č. 5, s. 629–641.
25. MOOR, J. J. W., VERSTRAETEN, G. (2008): Alluvial and colluvial sediment storage in the Geul River catchement (The Netherlands) – Combining field and modelling data to construct a Late Holocene sediment budget. Geomorphology, 95, s. 487–503. <https://doi.org/10.1016/j.geomorph.2007.07.012>
26. NEARING, M. A. (1997): A single, continuous fiction for slope steepness influence on soil loss. Soil Science Society of America Journal, 61, s. 917–919. <https://doi.org/10.2136/sssaj1997.03615995006100030029x>
27. PELACANI, S., MÄRKER, M., RODOLFI, G. (2008): Simulation of soil erosion and deposition in a changing land-use: A modelling approach to implement the support praktice factor. Geomorphology, 99, s. 329–340. <https://doi.org/10.1016/j.geomorph.2007.11.010>
28. PISTOCCHI, A., CASSANI, G., ZANI, O. (2002): Use of the USPED model for mapping and managing best land conservation practices. http://www.iemss.org/iemss2002/proceedings/pdf/volume%20tre/331_pistocchi.pdf (14. 2. 2010).
29. ROYSSCHAERT, G., POESEN, J., NOTEBAERT, B., VERSTRAETEN, G., GOVERS, G. (2008): Spatial and long-term variability of soil loss due to crop harvesting and the importace relative to water erosion: A case study from Belgium. Agriculture, Ecosystems and Environment, 126, s. 217–228. <https://doi.org/10.1016/j.agee.2008.01.027>
30. STANKOVIANSKY, M., KOCO, Š., PECHO, J., JENČO, M., JUHÁS, J. (2008): Geomorphic response of dry valley basin to large scale land-use changes in the second half of 20th century and problems with its reconstructions. Moravian Geographical Reports, 16, č. 4, s. 16–26.
31. USPED model for erosion/deposition (2010). http://skagit.meas.ncsu.edu/~helena/gmslab/denix/usped.html (14. 2. 2010).
32. VAN OOST, K., GOVERS, G., CERDAN, O., THAURÉ, D., VAN ROMPAEY, A., STEEGEN, A., NACHTERGAELE, J., TAKKEN, I., POESEN, J. (2005): Spatially distributed data for erosion model calibration and validation: The Ganspoel and Kinderveld datasets. Catena, 61, s. 105–121. <https://doi.org/10.1016/j.catena.2005.03.001>
33. VAN OOST, K., GOVERS, G., DESMET, P. J. J. (2000): Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landscape Ecology, 15, č. 6, s. 579–591. <https://doi.org/10.1023/A:1008198215674>
34. VAN ROMPAEY, A., BAZZOFFI, P., JONES, R. J. A., MONTARELLA, L. (2005): Modelling sediment yields in Italian catchements. Geomorphology, 65, s. 157–169. <https://doi.org/10.1016/j.geomorph.2004.08.006>
35. VAN ROMPAEY, A, KRÁSA, J., DOSTÁL, T. (2007): Modelling the impact of land cover changes in the Czech Republic on sediment delivery. Land Use Policy, 24, s. 576–583. <https://doi.org/10.1016/j.landusepol.2005.10.003>
36. VAN ROMPAEY, A., VERSTRAETEN, G., VAN OOST, K., GOVERS, G., POESEN, J. (2001): Modelling mean annual sediment yield using a distributed approach. Earth Surface Processes and Landforms, 26, č. 11, s. 1221–1236. <https://doi.org/10.1002/esp.275>
37. VERSTRAETEN, G. (2006): Regional scale modelling of hillslope sediment delivery with SRTM elevation data. Geomorphology, 81, s. 128–140. <https://doi.org/10.1016/j.geomorph.2006.04.005>
38. VERSTRAETEN, G., PROSSER, I. P., FOGARTY, P. (2007): Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee catchement, Australia. Journal of Hydrology, 334, s. 440–454. <https://doi.org/10.1016/j.jhydrol.2006.10.025>
39. VERSTRAETEN, G., VAN OOST, K., VAN ROMPAEY, A., POESEN, J., GOVERS, G. (2002): Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modelling. Soil Use and Management, 18, s. 386–394. <https://doi.org/10.1111/j.1475-2743.2002.tb00257.x>
40. WARD, P. J., VAN BALEN, R. T., VERSTRAETEN, G., RENSSEN, H., VANDENBERGHE, J. (2009): The impact o fland use and climate change on late Holocene and future suspended sediment yield of the Meuse catchement. Geomorphology, 103, s. 389–400. <https://doi.org/10.1016/j.geomorph.2008.07.006>
41. WARREN, S. D., MITÁŠOVÁ, H., HOHMANN, M. G., LANDSBERGER, S., ISKANDER, F. Y., RUZYCKI, T. S., SENSEMAN, G. M. (2005): Validation of 3-D enhancement of the Universal Soil Loss Equation for prediction of soil erosion and deposition. Catena, 64, s. 281–296. <https://doi.org/10.1016/j.catena.2005.08.010>
42. WISHMEIER, W. H., SMITH, D. D. (1978): Predicting rainfall erosion loesses. A guide to conservation planning. Agr. Handbook No. 535, U. S. Dept. of Agriculture, Washington, D.C.
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive