Geografie 2012, 117, 1-20
https://doi.org/10.37040/geografie2012117010001
    The influence of meteorological factors on rockfall in the Moravskoslezské Beskydy Mts.
References
1. , A. (1986): A homogeneity test applied to precipitation data. Journal of Climatology, 6, No. 6, pp. 661–675.
            <https://doi.org/10.1002/joc.3370060607>
        
        
    
        2. ALEXANDERSSON, A. (1995): Homogeneity testing, multiple breaks and trends. In: Proceedings of the 6th International Meeting on Statistical Climatology, Galway, Ireland, 19–23 June, pp. 439–441.
            
        
        
    
        3. , A., DAVENPORT, C. (2005): Rockfalls triggered by the AD 1356 Basle Earthquake. Terra Nova, 15, No. 4, pp. 258–264.
            <https://doi.org/10.1046/j.1365-3121.2003.00496.x>
        
        
    
        4. , F., QUETEL, C., DORREN, L.K.A. (2002): Forest: A natural protection mean against rockfall, but with which efficiency? The objectives and methodology of the ROCKFOR project. Interpavement, 2, pp. 815–826.
            
        
        
    
        5. , O.U. (2002): Measuring and data processing in tree-ring research – a methodological introduction. Dendrochronologia, 20, No. 1–2, pp. 203–216.
            <https://doi.org/10.1078/1125-7865-00017>
        
        
    
        6. BRÁZDIL, R., KIRCHNER, K., eds. (2007): Vybrané přírodní extrémy a jejich dopady na Moravě a ve Slezsku. Masarykova univerzita, Český hydrometeorologický ústav, Ústav geoniky Akademie věd České republiky, v. v. i., Brno, Praha, Ostrava, 432 pp.
            
        
        
    
        7. , R., ŠTĚPÁNEK, P. (1998): Kolísání teploty vzduchu v Brně v období 1891–1995. Geografie, 103, No. 1, pp. 13–30.
            
        
        
    
        8. , J.A., HARP, E.L. (2007): Influence of tectonic folding on rockfall susceptibility, American Fork Canyon, Utah, USA. Natural Hazards and Earth System Science, 7, No. 1, pp. 1–14.
            <https://doi.org/10.5194/nhess-7-1-2007>
        
        
    
        9. , M.C.R., HAMZA, O., HARRIS, C. (2001): The effect of rise in mean annual temperatures on the stability of rock slopes containing ice filled discontinuities. Permafrost and Periglacial Processes, 12, No. 1, pp. 137–144.
            <https://doi.org/10.1002/ppp.378>
        
        
    
        10. FALC, Z. (2001): Finanční pomoc státu při stabilizaci sesuvů v regionech postižených následky povodní. Materiály tiskového oddělení MŽP ČR, Praha.
            
        
        
    
        11. , S., HOELZLE, M., HAEBERLI, W. (2004): Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophysical Research Letters, 31, No. 13, L13504.
            <https://doi.org/10.1029/2004GL020051>
        
        
    
        12. GRUNER, O. (2008): Klimatische und meteorologische Einflüsse auf Sturzprozesse. Interpraevent, Conference Proceedings, Dorbin Vorarlberg, Austria, 26–30 May, Vol. 2, pp. 147–158.
            
        
        
    
        13. , J., PÁNEK, T. (2008): Deep-seated gravitational slope deformations and their influence on consequent mass movements (case studies from the highest part of the Czech Carpathians). Natural Hazards, 45, No. 2, pp. 235–253.
            <https://doi.org/10.1007/s11069-007-9157-7>
        
        
    
        14. , M., KURASHIGE, Y., HIRAKAWA, K. (2004): Analysis of crack movements observed in an alpine bedrock cliff. Earth Surface Processes and Landforms, 29, No. 7, pp. 883–891.
            <https://doi.org/10.1002/esp.1076>
        
        
    
        15. , M., BAILLIFARD, F., BARDOU, E., GIROD, F. (2004): The effect of weathering on alpine rock instability. Quarterly Journal of Engineering Geology & Hydrogeology, 37, No. 2, pp. 95–103.
            <https://doi.org/10.1144/1470-9236/03-046>
        
        
    
        16. , K., KREJČÍ, O. (1998): Slope movements in the Flysch Carpathians of Eastern Moravia (Vsetín District), triggered by extreme rainfalls in 1997. Moravian Geographical Reports, 6, No. 1, pp. 43–52.
            
        
        
    
        17. , K., KREJČÍ, O., MÁČKA, Z., BÍL, M. (2000): Slope deformations in eastern Moravia, Vsetín District (Outer Western Carpathians). AUC Geographica, 35, Supplementum, pp. 133–143.
            
        
        
    
        18. , J. (2011): Rockfall hazard and risk assessment on forested slopes, examples from Czechia. Geografie, 116, No. 2, pp. 144–155.
            
        
        
    
        19. , O., BAROŇ, I., BÍL, M., HUBATKA, F., JUROVÁ, Z., KIRCHNER, K. (2002): Slope movements in the Flysch Carpathians of Eastern Czech Republic triggered by extreme rainfalls in 1997: a case study. Physics and Chemistry of the Earth, 27, No. 36, pp. 1567–1576.
            <https://doi.org/10.1016/S1474-7065(02)00178-X>
        
        
    
        20. , Z., POŠMOURNÝ, K. (2005): Přírodní katastrofy a rizika. Planeta, 12, No. 3, pp. 1–52.
            
        
        
    
        21. , B.H. (1976): Rockfalls and rockfall inventory data: some observations from Surprise Valley, Jasper National Park, Canada. Earth Surface Processes, 1, No. 3, pp. 287–298.
            <https://doi.org/10.1002/esp.3290010309>
        
        
    
        22. , S., LUZI, L., DE AMICIS, M. (2002): Rock falls induced by earthquakes: a statistical approach. Soil Dynamics and Earthquake Engineering, 22, No. 7, pp. 565–577.
            <https://doi.org/10.1016/S0267-7261(02)00036-2>
        
        
    
        23. , N. (2008): Frost weathering and rockwall erosion in the southeastern Swiss Alps: Long-term (1994–2006) observations. Geomorphology, 99, No. 1–4, pp. 353–368.
            <https://doi.org/10.1016/j.geomorph.2007.11.013>
        
        
    
        24. , N., SAKAI, H. (1999): Rockfall activity from an alpine cliff during thawing periods. Geomorphology, 28, No. 3–4, pp. 309–328.
            <https://doi.org/10.1016/S0169-555X(98)00116-0>
        
        
    
        25. MENČÍK, E., ADAMOVÁ, M., DVOŘÁK, J., DUDEK, A., JETEL, J., JURKOVÁ, A., HANZLÍKOVÁ, E., HOUŠA, V., PESLOVÁ, H., RYBÁŘOVÁ, L., ŠMÍD, B., ŠEBESTA, J., TYRÁČEK, J., VAŠÍČEK, Z. (1983): Geologie Moravskoslezských Beskyd a Podbeskydské pahorkatiny. Ústřední ústav geologický, Praha, 304 pp.
            
        
        
    
        26. , T., HRADECKÝ, J., MINÁR, J., HUNGR, O., DUŠEK, R. (2009): Late Holocene catastrophic slope collapse affected by deep-seated gravitational deformation in flysch: Ropice Mountain, Czech Republic. Geomorphology, 103, No. 3, pp. 414–429.
            <https://doi.org/10.1016/j.geomorph.2008.07.012>
        
        
    
        27. , S., STOFFEL, M., KIENHOLZ, H. (2006): Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps – A dendrogeomorphological case study. Geomorphology, 74, No. 1–4, pp. 219–231.
            <https://doi.org/10.1016/j.geomorph.2005.08.009>
        
        
    
        28. , A. (1960): Recent developments in the mountain slopes in Kärkevagge and surroundings, northern Scandinavia. Geografiska Annaler, 42, No. 2/3, pp. 65–200.
            
        
        
    
        29. , L., DELINE, P. (2011): Climate influence on rockfalls in high-Alpine steep rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the ‘Little Ice Age’. The Holocene, 21, No. 2, pp. 357–365.
            <https://doi.org/10.1177/0959683610374887>
        
        
    
        30. RYBÁŘ, J. (1999): Vliv klimatu na vývoj sesuvů a jiných nebezpečných svahových deformací. In: Geotechnické dny 1999. Sborník přednášek z odborného semináře Sesuvy a inženýrsko-geologické poměry Prahy věnované památce prof. Quido Záruby. Informační centrum České komory autorizovaných inženýrů a techniků činných ve výstavbě, Praha, pp. 36–45.
            
        
        
    
        31. RYBÁŘ, J. (2007): Vliv klimatu na vývoj různých typů svahových pohybů. Zprávy o geologických výzkumech v roce 2006. Česká geologická služba, Praha, pp. 90–92.
            
        
        
    
        32. , F., BAKKEHØI, S., HESTENS, E., LIED, K. (1997): The influence of meteorological factors on the initiation of debris flows, rockfalls, rockslides and rockmass stability. Publikasjon – Norges Geotekniske Institutt, 201, pp. 97–114.
            
        
        
    
        33. , D.M., STOFFEL, M. (2008a): Spatial analysis of rockfall activity, bounce heights and geomorphic changes over the last 50 years – A case study using dendrogeomorphology. Geomorphology, 102, No. 3–4, pp. 522–531.
            <https://doi.org/10.1016/j.geomorph.2008.05.043>
        
        
    
        34. , D.M., STOFFEL, M. (2008b): Tree-ring based reconstruction of the seasonal timing, major events and origin of rockfall on a case-study slope in the Swiss Alps. Natural Hazards and Earth System Science, 8, No. 2, pp. 203–211.
            <https://doi.org/10.5194/nhess-8-203-2008>
        
        
    
        35. , J., ZVELEBIL, J. (1998): Skalní řícení v kvádrových pískovcích v první polovině roku 1998 na Děčínsku. Geotechnika, 1, No. 4, pp. 10–12.
            
        
        
    
        36. , M., BOLLSCHWEILER, M., LIÈVRE, I., DELALOYE, R., MYINT, M., MONBARON, M. (2005): Analyzing rockfall activity (1600–2002) in a protection forest – a case study using dendrogeomorphology. Geomorphology, 68, No. 3–4, pp. 224–241.
            <https://doi.org/10.1016/j.geomorph.2004.11.017>
        
        
    
        37. , M., PERRET, S. (2006): Reconstructing past rockfall activity with tree rings: Some methodological considerations. Dendrochronologia, 24, No. 1, pp. 1–15.
            <https://doi.org/10.1016/j.dendro.2006.04.001>
        
        
    
        38. , K., BRÁZDIL, R., PÁNEK, T., DOBROVOLNÝ, P., KAŠIČKOVÁ, L., TOLASZ, R., TURSKÝ, O., VÁCLAVEK, M. (2011): Evaluation of meteorological controls of reconstructed rockfall activity in the Czech Flysch Carpathians. Earth Surface Processes and Landforms, 36, No. 14, pp. 1898–1909.
            <https://doi.org/10.1002/esp.2211>
        
        
    
        39. ŠTĚPÁNEK, P. (2004): Homogenizace teploty vzduchu na území České republiky v období přístrojových pozorování. Práce a studie, 32. Český hydrometeorologický ústav, Praha, 56 pp.
            
        
        
    
        40. ŠTĚPÁNEK, P. (2007): AnClim – software for time series analysis. Institute of Geography, Faculty of Natural Sciences, MU, Brno, 1.47 MB. http://www.climahom.eu/AnClim.html.
            
        
        
    
        41. TOLASZ, R., MÍKOVÁ, T., VALERIÁNOVÁ, A., VOŽENÍLEK, V., eds. (2007): Climate Atlas of Czechia. Český hydrometeorologický ústav, Palackého univerzita, Praha, Olomouc, 256 pp.
            
        
        
    
        42. , Z., ZVELEBIL, J., PALUŠ, M. (2011): Complex system approach to interpretation of monitoring time series: two case histories from NW Bohemia. Landslides, 8, No. 2, pp. 207–220.
            <https://doi.org/10.1007/s10346-010-0243-7>
        
        
    
        43. , J. (2002): Sanace nestabilních objektů v Hřensku. Geotechnika, 5, No. 3, pp. 13–16.
            
        
        
    
        44. , J. (1995): Determination of characteristic features of slope movements present day activity by monitoring in thick-bedded sandstones of the Bohemian Cretaceous Basin. AUC Geographica, 30, Supplementum, pp. 79–113.
            
        
        
    
        45. , J., MOSER, M. (2001): Monitoring based time-prediction of rock falls: Three casehistories. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26, No. 2, pp. 159–167.
            <https://doi.org/10.1016/S1464-1909(00)00234-3>
        
        
    

 
                
                