Geografie 2009, 114, 282-297

https://doi.org/10.37040/geografie2009114040282

Nomothetic geography revisited: statistical distributions, their underlying principles, and inequality measures

Josef Novotný, Vojtěch Nosek

Department of Social Geography and Regional development, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czechia

References

1. AMARAL, L. A. N., OTTINO, J. M. (2004): Complex networks: Augmenting the framework for the study of complex systems. The European Physical Journal B, 38, No. 2, pp. 174–162. <https://doi.org/10.1140/epjb/e2004-00110-5>
2. ANDERSSON, C., FRENKEN, K., HELLERVIK, A. (2006): A complex network approach to urban growth. Environment and Planning A, 38, No. 10, pp. 1941–1964. <https://doi.org/10.1068/a37418>
3. AITCHINSON, J., BROWN, J. A. C. (1957): The Lognormal Distribution. Cambridge University Press, Cambridge, 176 p.
4. AUERBACH, F. (1913): Das gesetz der bevolkerungskoncentration. Petermanns Geographische Mitteilungen, 59, No. 1, pp. 74–76.
5. CLAUSET, A., YOUNG, M., GLEDITSCH, K. S. (2007): On the frequency of severe terrorist events. Journal of Conflict Resolution, 51, No. 1, pp. 58–87. <https://doi.org/10.1177/0022002706296157>
6. COLE, J. P., KING, C. A. M. (1968): Quantitative geography: techniques and theories. Wiley, London, 692 p.
7. COWELL, F. A., FLACHAIRE, E. (2007): Income distribution and inequality measurement: The problem of extreme values. Journal of Econometrics, 141, No. 2, pp. 1044–1072. <https://doi.org/10.1016/j.jeconom.2007.01.001>
8. DAVIS, D. R., WEINSTEIN, D. W. (2002): Bones, bombs, and break points: the geography of economic activity. American Economic Review, 92, No. 5, pp. 1269–1289. <https://doi.org/10.1257/000282802762024502>
9. DOSTÁL, P., HAMPL, M. (1995): Geographical organization and societal development: searching for an integral approach. Acta Universitatis Carolinae Geographica, XXX, No. 1–2, pp. 21–42.
10. DOWNING, J. A., PRAIRIE, Y. T., COLE, J. J., DUARTE, C. M., TRANVIK, L. J., STRIEGL, R. G., MCDOWELL, W. H., KORTELAINEN, P., CARACO, N. F., MELACK, J. M., MIDDELBURG, J. (2006): The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 51, No. 5., pp. 2388–2397. <https://doi.org/10.4319/lo.2006.51.5.2388>
11. FRÉCHET, M. (1941): Sur la loi de répartition de certaines grandeurs géographiques. Journal de la Societé de Statistique de Paris, 82, 114–122.
12. GABAIX, X. (1999): Zipf’s law for cities: an explanation. Quarterly Journal of Economics, 114, No. 3, pp. 739–767. <https://doi.org/10.1162/003355399556133>
13. GABAIX, X., IOANNIDES, Y.M. (2003): The evolution of city size distributions. In: Henderson, J. V., Thisse, J. F. (ed.): Handbook of urban and regional economics, IV: Cities and geography, North-Holland, Amsterdam, pp. 2341–2378.
14. GALTON, F. (1869): Hereditary Genius: an Inquiry into its Laws and Consequences. London, Macmillan, 390 p.
15. GALTON, F. (1879): The geometric mean, in vital and social statistics. Proceedings of the Royal Society 29, pp. 365–367.
16. GIBRAT, R. (1931): Les inégalités économiques. Librarie du Recueil Sirey, Paris.
17. GINGERICH, P. D. (2000): Arithmetic or geometric normality of biological variation: an empirical test of theory. Journal of Theoretical Biology, 204, No. 2, pp. 201–221. <https://doi.org/10.1006/jtbi.2000.2008>
18. GUIMERA, R, MOSSA, S, TURTSCHI, A., AMARAL, L. A. N. (2005): The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. PNAS, 102, No. 22, pp. 7794–7799. <https://doi.org/10.1073/pnas.0407994102>
19. GUTENBARG, B., RICHTER, R. F. (1944): Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, No. 4, pp. 185–188.
20. HALLOY, S. (1998): A theoretical framework for abundance distributions in complex systems. Complexity International, 6, No. 12, pp. 1–12.
21. HAMPL, M. (2000): Reality, society and geographical/environmental organization: searching for an integrated order. Charles University. Prague, 112 p.
22. HAMPL, M. (1998): Realita, společnost a geografická organizace: hledání integrálního řádu. Přírodovědecká fakulta UK, Praha, 110 p.
23. HAMPL, M. (1971): Teorie komplexity a diferenciace světa. Praha, Univerzita Karlova, 183 p.
24. JONASSON, K. (2008): Documentation for life expectancy at birth (years) for countries and territories. Gapminder Documentation 004, Stockholm, www.gapminder.com.
25. KAIZOJI, T. (2003): Scaling behavior in land markets. Physica A: Statistical Mechanics and its Applications, 326, No. 1–2, pp. 256–264. <https://doi.org/10.1016/S0378-4371(03)00145-6>
26. KORČÁK, J. (1941): Přírodní dualita statistického rozložení. Statistický obzor, 22, pp. 171–222.
27. KORČÁK, J. (1938): Deux types fondamentaux de distribution statistique. Prague, Comité d’organisation, Bull. de l’Institute Int’l de Statistique, vol. 3, pp. 295–299.
28. LÁSKA, V. (1928): Zpráva o zeměpisně-statistickém atlasu. Věstník Československé akademie věd a umění, pp. 61–67.
29. LEVY, M., SOLOMON, S. (1996): Power laws are logarithmic Boltzmann laws. International Journal of Modern Physics C, 7, No. 4, pp. 595–601. <https://doi.org/10.1142/S0129183196000491>
30. LI, W., CAI, X. (2004): Statistical analysis of airport network of China. Physical Review E, 69, No. 4, pp. 1–6.
31. LIMPERT, E., STAHEL, W. A., ABBT, M. (2001): Log-normal distributions across the sciences: keys and clues. Bioscience, 51, No. 5, pp. 341–352. <https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2>
32. MALAMUD, B., MOREIN, G., TURCOTTE, D. (1998): Forest fires: an example of self-organized critical behavior. Science, 281, No. 5384, pp. 1840–1842. <https://doi.org/10.1126/science.281.5384.1840>
33. MANDELBROT, B. B. (1975a): Earth’s relief, shape and fractal dimension of coastlines, and number area for islands. PNAS, 72, No. 10, pp. 3825–3838. <https://doi.org/10.1073/pnas.72.10.3825>
34. MANDELBROT, B.B. (1975b): Les Objets Fractals, Forme, Hasard et Dimension. Flammarion, Paris, 190 p.
35. MITZENMACHER, M. (2003): A brief history of generative models for power law and lognormal distributions. Internet Mathematics, 1, No. 2, pp. 226–251. <https://doi.org/10.1080/15427951.2004.10129088>
36. NAGEL, K., PACZUSKI, M. (1995): Emergent traffic jams. Physical Review E, 51, No. 4, pp. 2909–2918. <https://doi.org/10.1103/PhysRevE.51.2909>
37. NETRDOVÁ, P., NOSEK, V. (2009): Přístupy k měření významu geografického rozměru společenských nerovnoměrností. Geografie, 114, No. 1, pp. 52–65.
38. NEWMAN, M. E. J. (2005): Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46, No. 5, pp. 323–351. <https://doi.org/10.1080/00107510500052444>
39. NOVOTNÝ, J. (2006): Negativní vlivy společensko-ekonomických nerovností a mechanismy jejich regulace. Ekonomický časopis, 54, No. 7, pp. 709–724.
40. NOVOTNÝ, J. (2007): On the measurement of regional inequality: does spatial dimension of income inequality matter? Annals of Regional Science, 41, No. 3, pp. 563–580. <https://doi.org/10.1007/s00168-007-0113-y>
41. O’SULLIVAN, D. (2004): Complexity science and human geography. Transactions of the Institute of British Geographers, 29, No. 3, pp. 282–295. <https://doi.org/10.1111/j.0020-2754.2004.00321.x>
42. PRESTON, F. W. (1948): The commonness and rarity of species. Ecology, 29, No. 3, pp. 611–627.
43. QUETELET, A. (1835): Sur l’homme et le développement de ses facultés, ou essai de physique sociale. Livre second. Bachelier, Paris, 327 p.
44. RICHARDSON, L. F. (1948): Variation of the frequency of fatal quarrels with magnitude. Journal of the American Statistical Association, 43, No. 244, pp. 523–546. <https://doi.org/10.1080/01621459.1948.10483278>
45. ROBERTS, D., TURCOTTE, D. (1998): Fractality and self-organized criticality of wars. Fractals, 6, No. 4, pp. 351–357. <https://doi.org/10.1142/S0218348X98000407>
46. SILVERMAN, B. W. (1986): Density Estimation for Statistics and Data Analysis. Chapman and Hall, London, 212 p.
47. SIMON, H. A. (1955): On a class of skew distribution functions. Biometrika, 42, No. 3/4, pp. 425–440. <https://doi.org/10.1093/biomet/42.3-4.425>
48. SIMON, H. A., BONINI, CH. (1958): The size distribution of business firms. The American Economic Review, 48, No. 4, pp. 607–617.
49. ŠIZLING, A. L., ŠTORCH, D., ŠIZLINGOVÁ, E., REIF, J., GASTON, K. J. (2009): Speciesabundance distribution results from a spatial analogy of central limit theorem. PNAS, 106, No. 16, pp. 6691–6695. <https://doi.org/10.1073/pnas.0810096106>
50. THOMAS, R. W., HUGGETT, R. J. (1980): Modelling in geography: a mathematical approach. Barnes and Noble, New Jersey, 338 p.
51. TOBLER, W. (1970): A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, No. 2, 234–240. <https://doi.org/10.2307/143141>
52. TURCOTTE, D. (1995): Scaling in geology: landforms and earthquakes. PNAS, 92, No. 15, pp. 6697–6704. <https://doi.org/10.1073/pnas.92.15.6697>
53. ULUBAŞOĞLU, A., HAZARI, B. R. (2004): Zipf’s law strikes again: the case of tourism. Journal of Economic Geography, 4, No 4, pp. 459–472. <https://doi.org/10.1093/jnlecg/lbh030>
54. WILLIS, J. C., YULE, G. U. (1922): Some statistics of evolution and geographical distribution in plants and animals, and their significance. Nature, 109, pp. 177–179. <https://doi.org/10.1038/109177a0>
55. ZIPF, G. K. (1949): Human behaviour and the principle of least effort. Addison-Wesley, Reading MA.
front cover

ISSN 1212-0014 (Print) ISSN 2571-421X (Online)

Archive