Geografie 2008, 113, 125-139

https://doi.org/10.37040/geografie2008113020125

Geographically weighted regression: Method for analysing spatial nonstationarity of geographical phenomenon

Pavlína Spurná

Katedra sociální geografie a regionálního rozvoje, Přírodovědecká fakulta UK, Albertov 6, 128 43 Praha 2, Czechia

Crossref Cited-by Linking

  • Suchánek Joná\u0161, Hasman Ji\u0159í: Nativist with(out) a cause: a geographical analysis of the populist radical right in the 2017 and 2021 Czech parliamentary elections. Territory, Politics, Governance 2024, 12, 1563. <https://doi.org/10.1080/21622671.2022.2150287>
  • Korčák Matěj, Netrdová Pavlína: The historical Sudetenland border and the current socio-spatial differentiation of Czechia: a quantitative look at the long-term impact of institutional changes. Geografie 2022, 127, 365. <https://doi.org/10.37040/geografie.2022.011>
  • Kevický Dominik: Themes, approaches, and methods in the geographical analysis of Czech and Slovak parliamentary elections: a systematic review. AUC GEOGRAPHICA 2021, 56, 248. <https://doi.org/10.14712/23361980.2021.16>
  • Sun Yifan, Li Jing, Jin Xianfeng, Xiao He, He Zhiming, Su Shiliang, Weng Min: Intra-urban excessive alcohol drinking: Geographic disparities, associated neighborhood characteristics and implications for healthy city planning. Sustainable Cities and Society 2019, 46, 101414. <https://doi.org/10.1016/j.scs.2018.12.042>
  • Hong Haoyuan, Pradhan Biswajeet, Sameen Maher Ibrahim, Chen Wei, Xu Chong: Spatial prediction of rotational landslide using geographically weighted regression, logistic regression, and support vector machine models in Xing Guo area (China). Geomatics, Natural Hazards and Risk 2017, 8, 1997. <https://doi.org/10.1080/19475705.2017.1403974>
  • Kážmér Ladislav, Gregorová Eva: Self-rated Health and its Socio-spatial Conditionality: Housing Case Study of the Senior Population of Brno. Geografie 2015, 120, 603. <https://doi.org/10.37040/geografie2015120040603>
  • Khormi Hassan M., Kumar Lalit: Modeling dengue fever risk based on socioeconomic parameters, nationality and age groups: GIS and remote sensing based case study. Science of The Total Environment 2011, 409, 4713. <https://doi.org/10.1016/j.scitotenv.2011.08.028>
  • Novák Jakub, Netrdová Pavlína: Spatial Patterns of Socioeconomic Differentiation in the Czech Republic at the Level of Municipalities. Czech Sociological Review 2011, 47, 717. <https://doi.org/10.13060/00380288.2011.47.4.05>
  • Vilímek Vít, Zvelebil Jiří, Kalvoda Jan, Šíma Jiří: Landslide field research and capacity building through international collaboration. Landslides 2010, 7, 375. <https://doi.org/10.1007/s10346-010-0209-9>
  • Perlín Radim, Kučerová Silvie, Kučera Zdeněk: A Typology of Rural Space in Czechia according to its Potential for Development. Geografie 2010, 115, 161. <https://doi.org/10.37040/geografie2010115020161>
  • Spurná Pavlína: Prostorová autokorelace - v\u0161udyp\u0159ítomný jev p\u0159i analýze prostorových dat? [Spatial Autocorrelation - A Pervasive Phenomenon in the Analysis of Spatial Data?]. Czech Sociological Review 2008, 44, 767. <https://doi.org/10.13060/00380288.2008.44.4.08>
Crossref Cited-by Linking logo