
282

GEOGRAFIE – SBORNÍK ČESKÉ GEOGRAFICKÉ SPOLEČNOSTI
ROK 2009 • ČÍSLO 4 • ROČNÍK 114

JOSEF NOVOTNÝ, VOJTĚCH NOSEK

NOMOTHETIC GEOGRAPHY REVISITED:
STATISTICAL DISTRIBUTIONS, THEIR UNDERLYING 

PRINCIPLES, AND INEQUALITY MEASURES

J .  N o v o t n ý ,  V.  N o s e k :  Nomothetic geography revisited: statistical distributions, 
their underlying principles, and inequality measures. – Geo gra fie – Sborník ČGS, 114, 
4, pp. 282–297 (2009). – The paper focuses on some issues related to regularities in the 
statistical distributions of various social and environmental phenomena. Firstly, an older 
concern with statistical distributions of complex systems is revisited in order to exemplify 
surprisingly similar findings obtained across different disciplines. This interest has also 
been reflected in geography with a lot of activity given to the documentation and classifica-
tion of the regularities but less to their explanations. As such, in the second part, some 
basic examples of general (statistical rather than context-specific) underlying principles for 
considered types of distributions are mentioned. The third part addresses related question 
of the measurement of inequality, which is the most commonly studied quantitative aspect 
of a statistical distribution. The performance of selected parametric measures of inequality 
is tested with respect to data coming from differently skewed distributions.
KEY WORDS: complex phenomena – inequality measures – regularity – statistical distribu-
tion.

The authors acknowledge support from the Research Grant MSM 0021620831 sponsored by 
the Czech Ministry of Education, Youth and Sport and from the project GA UK 8388/2008.

1. Introduction

The most common definition of geography refers to the study of spatial 
differentiation. From a geography-as-spatial-science point of view, a one-di-
mensional expression of two-dimensional spatial differentiation is statistical 
distribution showing the inequality in terms of the dispersion of observations 
around a central value. In the most general sense, the statistical distribution 
“demonstrates a kind of general regularity in the structure of external world. 
It contributes to the understanding of how the world is ordered and it thus 
helps to clarify one of the oldest philosophical tasks” (Korčák 1941, p. 172).

This paper concerns regularities in the statistical distributions of various 
social and environmental phenomena. It is a topic that has long been stud-
ied in a variety of scientific fields. The first step of such endeavour is usually 
observing and classifying empirical data and searching for general patterns. 
Typically, this involves the comparison of the data with theoretical models. If 
there is a pattern (e.g. when a particular functional form fits the data well), 
there is usually an underlying reason for it. As such, the next step of this 
research explores possible underlying mechanisms for the distribution in 
question. In this respect, it makes conceptual sense to distinguish between 
“general statistical” principles and “context-specific” underlying mechanisms 
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and factors, when the former may be considered as the “law-like” principles 
that do not directly depend on the specific context of a particular example. 
In addition to their academic value, the knowledge of basic regularities in 
the statistical distributions has an obvious practical appeal. For example, the 
majority of commonly used quantitative methods are parametric so that they 
make assumptions about (and depend upon) the distribution from which the 
analyzed data are drawn.

Given these introductory notes, the three interrelated objectives according 
to which the paper is organized are as follows. Firstly, in an overview of a lit-
erature, a long standing concern with statistical distributions of complex sys-
tems is revisited in order to exemplify surprisingly similar findings obtained 
across different fields of science dealing with complex phenomena. Inevitably, 
this interest has also been reflected in geography, though the discipline is far 
from being exceptional in this respect. In fact, while a lot of activity has been 
given to the empirical documentation of the empirical regularities (such as of 
the famous Zipf’s law), considerably less effort has been devoted to their expla-
nations. Therefore, the second goal of this paper is to discuss some examples 
of general statistical (rather than context-specific) underlying principles that 
can provide some basic explanations for the emergence of considered statisti-
cal distributions (hence the term “nomothetic” in the title). The third objective 
of the article is more practical and concerns the measurement of inequality, 
which is the most commonly studied quantitative aspect of a statistical dis-
tribution. The performance of selected widely used parametric measures of 
inequality is tested with respect to data coming from distributions with differ-
ent skewness.

2. Basic notations

Let us now begin with some simple notations. First, let us define a vec-
tor of non-negative measurements of some phenomena: y1, y2, y3…yn, where n 
denotes the number of observations. In addition, let f(y) be the probability den-
sity function describing the frequency distribution and  be an estimate of 
this density function (i.e. a smoothed histogram). In the examples of statistical 
distributions provided in this paper we apply the Gaussian kernel probability 
density estimates corresponding to:

where y is the average value of the measured variable, yj denotes the same 
variable for the unit j, h stands for the bandwidth (a parameter that deter-
mines smoothness of the density curve) and K is a Gaussian function that 
integrates to one. In this paper the method of automatic selection of h is ap-
plied as described in Silverman (1986). Although there are several other ways 
of describing statistical distribution, for the sake of simplicity, below we will 
use the term statistical distribution (or simply distribution) when referring 
to the estimates of univariate probability density function. Analogously, a 
bivariate and more generally a multivariate probability density distribution 
could be considered in order to analyze whether and how the variable in ques-
tion interact with other measurable variables. The statistical investigation 
of probabilistic dependencies between different variables is however not ad-
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dressed in this paper, as the focus is solely on the regularities in the univariate 
probability distributions.

3. Statistical distributions of complex systems analyzed
in geography and elsewhere

In their introductory textbook on quantitative geography, Cole and King 
(1968, p. 2) indicate that the limit to the scope of the entities of geographi-
cal inquiry is usually reached when they become increasingly divided into 
smaller elements. In this simple way, the authors suggest that geographers 
are typically concerned with relatively complex systems and, consequently, 
with spatial variations in variables pertaining to these systems. Although 
there is a large variety of such systems, for the present purposes a distinction 
can be made between “individual objects” (such as cities, firms, lakes and riv-
ers, mountain ranges, etc.) and regional systems (conceptualized, ideally, as 
spatially contiguous functional regions). While concern with regional systems 
is somewhat special to geography, the interest in the former group of enti-
ties is often common to different fields of science such as biology and ecology, 
earth sciences, physics, economics, and other disciplines dealing with complex 
phenomena. Despite the examples given below refer to the distributions of 
regions, a multidisciplinary engagement with the differentiation of the sets of 
various other complex systems provides important departures.

For the purposes of this paper a complex system is conceived in a usual 
way as any system composed from a large number of interacting components 
(particles grouping into the active agents) which form an integrated whole. 
Some other constitutive properties of complex systems are the non-linearity 
of interactions, the adaptive behavior (self-organization under selective pres-
sures and a capacity to learn from history), the emergence (new “qualities” 
or properties arising out of a multiplicity of relatively simple interactions), 
the flexibility of boundaries, or the tendency to organize in hierarchies (see 
e.g. Halloy 1998; Amaral, Ottino 2004; O’Sullivan 2004). Please note that this 
meaning is not identical with the definition of the term complex system as fol-

lows from “the primary classification 
of real systems” (Hampl, 1998, p. 196), 
in which the author stressed a high 
structural complexity of geographical 
systems in terms of their higher qual-
itative completeness in comparison to 
other real systems.

Being a subject of numerous con-
text-specific influences, the actual dis-
tribution of any set of complex systems 
is always to a large extent a matter of 
empirical observation. However, this 
is not to deny the existence of some 
general regularities such as that of 
an elementary difference between the 
distributions based on the measures 
of the “inner structure” or “inner 
quality” of some complex systems 
and those based on variables which 

Fig. 1 – Distributions of 3,141 US counties 
according to the selected structure/quality 
characteristics and respective size charac-
teristics. Source of data: US Census Bu-
reau.
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measure their size or magnitude (Thomas, Huggett 1980; Hampl 1971, 1998, 
2000; Dostál, Hampl 1995). The distributions based on the former type of char-
acteristics reveal relatively more symmetric shapes signifying a “typological” 
similarity of these entities compared to the quite asymmetric – considerably 
right-skewed – distributions according to their size measures. Some illustra-
tive examples are shown in Figure 1 that depicts distributions of US counties 
based on the selected structure/quality characteristics (divorce rate, income 
per capita) and their respective size characteristics (number of divorced, in-
come per square km).

Although a normal distribution is often considered as an appropriate func-
tional form for the distributions based on the former type of variables, few 
empirical observations fit it perfectly in reality. In addition to discrepancies 
such as the floor (or ceiling) effect that may easily obscure the applicability of 
a normal distribution, often a more dynamic view is needed. Taking the time 
dimension and the character of the respective diffusion processes into account, 
we may often observe that the distribution is situated in some point of transi-
tion from one “state of symmetry” to another with various asymmetries in 
between. Usually, such distributions tend to proceed through the right-skewed 
to the left-skewed shape according to the diffusion of some “innovation”. 
Figure 2 provides an illustrative example that shows the historical evolution 
of the distribution of world countries according to their estimated life expect-
ancy in the period 1800–2007. In this case, the epidemiological, nutrition, and 
demographic transitions (often conditioned by other factors such as economic 
and socio-cultural) may be considered as the abovementioned “innovations” 
whose diffusion determines the actual shape of the curve.

In contrast to the relative typological “homogeneity” of complex systems 
with respect to their structure/quality characteristics signified by their more 
or less symmetric distributions, they tend to be considerably differentiated 
with regard to their size measures. The statistical expression of this behavior 
is a class of highly right-skewed statistical distributions with a large number 
of low values and few high values. The size distributions of numerous relevant 
examples include cities and towns (Auerbach 1913, Zipf 1949, Simon 1955), 
firms (Gibrat 1931; Simon, Bonini 1958), land according to its value (Kaizoji 
2003, Andersson et al. 2006), wars and terrorist events (Richardson 1948; 
Roberts, Turcotte 1998; Clauset et al. 
2007), tourism arrivals (Ulubaşoğlu, 
Hazari 2004), islands, lakes, catch-
ment areas, or lengths of rivers in riv-
er networks among other landforms 
(Korčák 1938, 1941; Turcotte 1995; 
Downing et al. 2006), disasters such 
as earthquakes (Gutenberg, Richter 
1944), floods or wildfires (Malamud et 
al. 1998, Newman 2005), abundance 
of biological species (Willis, Yule 1922; 
Simon 1955; Preston 1960), worldwide 
and national transportation networks 
(Guimerà et al. 2005; Li, Cai 2004), or 
traffic jams (Nagel, Paczuski 1995).

Interestingly, this non-exhaustive 
list of literature indicates a surpris-
ingly similar interest in certain types 

Fig. 2 – Evolution of the distribution of the 
world countries according to their estimat-
ed life expectancy. Source of data: dataset 
compiled by Gapminder.org basing on dif-
ferent sources and numerous estimates (see 
Johansson 2008).
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of considerably right-skewed (positively asymmetric) distributions across dif-
ferent fields of scientific study, which dates back well into the nineteenth cen-
tury. To go beyond the examples quoted above, Galton (1879) had previously 
emphasized the fact that the “law of arithmetic mean” (introduced into social 
science by Quetelet 1835) is inappropriate for distributions of many “social and 
vital” statistics. He thus expressed a concern similar to numerous subsequent 
authors who dealt with many other social, as well as natural phenomena. Not 
incidentally, this concern has also been reflected in geography especially with 
regard to a substantive body of research devoted to the empirical regularity 
known as Zipf’s law for cities. However, it appears that the first who described 
the general importance of asymmetric forms of variability in terms of highly 
skewed frequency distributions for geographical phenomena was Korčák 
(1938, 1941) who was inspired by Láska (1928) who proposed a method for a 
map-scale determination based on the examination of the frequency distribu-
tions.

The empirical findings of Korčák have been further elaborated by Hampl 
(1971, 1998, or 2000 among other works) into a consistent theory. In addition 
to the difference between the distributions of structural and size variables 
that is discussed in this paper, the focus of Hampl was also on the difference 
between generally more symmetric size distributions of “elements” (relative 
similarity of internal/personal capacities of individuals) in comparison to a 
transient distribution of “semi-complexes” (partial heterogeneity of narrowly 
defined social systems) and strongly right-skewed distributions of “complex 
geographical systems” (i.e. externally determined hierarchies typical for so-
cietal organization in environment). Also notably, some of the Korčák’s (1938) 
empirical findings have had an interesting international impact that has so 
far been ignored within the Czech geographical community. As indicated 
by a well known mathematician B. Mandelbrot in personal communication 
with the authors, it was a French mathematician Fréchet who noticed the 
Korčák’s empirical findings on the size distributions of lakes and islands 
(Fréchet 1941) and who made them available to Mandelbrot. Later on, Man-
delbrot acknowledged Korčák’s findings in some of his works on fractals 
(e.g. Mandelbrot 1975a, 1975b). This gave rise to a dozen of the subsequent 
references to original Korčák’s paper (including the very recent ones) that 
have appeared in the literature from various fields (mostly environmental 
sciences).

Despite the existence of several other functional forms for strongly right-
skewed distributions, the above mentioned empirical distributions are most 
commonly approximated either by a power law function/distribution1 (includ-
ing the special cases of Pareto and Zipf’s distributions) or by a lognormal 
distribution. Sometimes, a combination of these two functional forms provides 
a realistic approximation when the upper tail is estimated by a power law 
and the body by a lognormal distribution (Levy, Solomon 1996; Gabaix 1999; 
Mitzenmacher 2003). As such, these two families, which are the most familiar 
from the class of highly skewed distribution functions, may be considered as 
the approximate (if not natural2) “attractors” for the size distributions of many 
complex systems including those studied in geography.

1 Power law is a scale invariant polynomial relationship between two variables (x and y) 
that can be described generally as y = ax–k, where a is a constant and k is a scaling 
exponent. Note that by transforming both sides of the equation to logarithms we get: 
log(y)  =  log (a) – k × log(x), which describe a line in a log-log plot with slope –k.
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Two illustrative examples of three 
different displays of empirical distri-
butions that may be approximated 
by a power law or lognormal func-
tional forms are shown in Figure 3. 
It depicts the distributions of Czech 
municipalities and US counties ac-
cording to their population size. The 
upper plots capture conventional 
kernel density estimates based on 
the untransformed values, the mid-
dle plots show the same observations 
after logarithmic transformations, 
and the lower plots display log-log 
rank-size relationships. A simple way 
of inspecting whether the empirical 
data exhibit the properties of a power 
law is their comparison to Zipf’s mod-
els that correspond to the straight 
lines in the lower plots in Figure 3. 
As the visual inspection suggests, the 
distribution of Czech municipalities 
seems to obey the Zipf’s functional 
form very well. This is additionally 
confirmed numerically by almost per-
fect fit of a regression line correspond-
ing to: logpopcz  =  6.65  –  1.19  logrankcz; 
R2  =  0.94 (note the almost ideal slope 
of the regression line). In addition, 
the Vuong’s test suggests the suitability of power law explanation in compari-
son with the application of other highly skewed distributions. By contrast, an 
explanation allowing for non-linearity in the log-log rank-size relationship 
seems to be more plausible for the distribution of US counties, which also 
documents the fit of polynomial regression: logpopus = 5.59 + 1.00 logrankus 
– 0.44 (logrankus)2; (R2 = 0.94). At the same time, the concavity of the rank-size 
plot indicates the applicability of a lognormal functional form (Ulubaşoğlu and 
Hazari 2004, p. 465). Although conventional statistical tests do not allow us to 
conclude (at the usual significance level) that the empirical data strictly follow 
some particular functional form, a lognormal function seems to be the closest 
of the other commonly used distributions that were tested. These findings may 
suggest a hybrid explanation for the population size distributions in terms of 
simultaneous operation of generative principles which are usually proposed 
for power laws and lognormal distributions. Some of the basic generative 
mechanisms will be briefly described in the following section.

Fig. 3 – Different displays of the distribu-
tions of 6,258 Czech municipalities (left 
side plots) and 3,141 US counties (right side 
plots) according to their population size. The 
straight lines on the log-log rank-size plots 
(lower plots) represent theoretical Zipf’s dis-
tributions. Sources: Czech Statistical  Office 
(Census 2001), US Census 2000.

2 Halloy (1998) proposed theoretical framework explaining the general convergence of the 
size distribution of (certain sort of) complex systems towards a “polo” distribution – that 
means simultaneously to a power law rank-size distribution and a lognormal frequency 
distribution.
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4. Basic underlying principles

Although the observation and categorization of regularities according to 
which the external world is organized is undoubtedly an important task, it 
is only the first step which has to be followed by an effort directed towards 
providing explanation for these regularities. In the case of statistical distribu-
tions discussed in the previous section such explanation resides in examining 
processes from which these distributions may arise. Although the actual shape 
of each empirical distribution is usually subject to a number of specific influ-
ences (consider impacts of the epidemiological, nutrition, and demographic 
transitions in the example of world life expectancy distribution in Figure 2), 
it is often thought that there are some more general generative principles 
that work beyond the specific contexts of particular empirical examples. These 
principles may be regarded as determining the stochastic attraction of the em-
pirical distributions to the properties of functional forms mentioned above.

In this regard, the very label “skewed distribution” personifies the fact that 
a given distribution deviates from the normal distribution symmetry. It thus 
seems reasonable to begin with the classical explanation of normal distribution 
on the basis of the central limit theorem (CLT) that may serve a simple null 
proposition against which different mechanisms that skew so many empirical 
distributions to the right can be contrasted. In this way, we will briefly outline 
two groups of such general mechanisms including the random multiplicative 
process and the spatial analogies of the CLT.

4 . 1 .  R a n d o m  m u l t i p l i c a t i v e  p r o c e s s

The classical CLT states that the normal distribution arises from the sum-
mation of many independent random variables (supposing some other condi-
tions are in place). It is a result of the cumulative addition of many small 
independent effects distributed relatively symmetrically around both sides of 
the average observation and, as such, it has also become known as “the law of 
error”. A number of real processes are additive in character such as most of 
those underlying the endogenous variability of the traits and abilities of indi-
viduals within a genera (not incidentally, examples from genetics have been 
frequently mentioned – see Galton 1869).

However, the classical CLT can hardly explain situation when the observa-
tions of the same phenomena differ by orders of magnitude. It is thus sug-
gested that “the law of error has two forms, and resulting normality may be 
arithmetic where equivalent positive and negative deviations from expecta-
tion differ by equal amounts, or normality may be geometric where equivalent 
deviations differ by equal proportions” (Gingerich 2000, p. 201). The term geo-
metric normality refers to the fact that underlying processes are multiplicative 
rather than additive or, put differently, they are additive acting on logarithms 
because: log(x × y) = log(x) + log(y). It then follows from the basis of the additive 
CLT that log(x × y) approaches a normal distribution implying that the product 
itself (x × y) approaches a log-normal distribution (according to the multiplica-
tive version of CLT). As such, lognormal distribution is sometimes emphasized 
to have virtually as fundamental a position in the real world as does the nor-
mal distribution (Aitchinson and Brown 1957, Limpert et al. 2001).

A simple example of such a multiplicative process that is often used as an 
explanation of the genesis of the size distributions of many complex systems 
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is the mechanism of random multiplicative growth. The essence of this con-
cept has also become known as the “law of proportionate effect” (Gibrat 1931, 
Simon 1955) as it assumes that absolute increments are proportional to the 
size of a system in question (i.e. multiplicative effect). In addition, it proves 
that even purely random fluctuations in growth rates within a set of complex 
systems (e.g. due to specific environmental or social factors) will on the basis of 
the multiplicative CLT lead to a highly right-skewed size distribution. Moreo-
ver, this distribution is thought to have lognormal properties according to the 
Gibrat’s original formulation or power law properties if some further specifica-
tions are added.3 The mechanism of a stochastic multiplicative growth and its 
various modifications4 has gained a prominent position among several other 
explanations including the concepts of preferential attachment or optimizing 
behavior (e.g. Mitzenmacher 2003). It has also been frequently mentioned 
with regard to phenomena studied in geography such as those concerning the 
formation and modeling of urban systems and distribution of population or 
economic activity (Gabaix 1999; Davis, Weinstein 2002; Gabaix, Ioannides 
2003) or differentiation of tourism arrivals (Ulubaşoğlu, Hazari 2004) among 
other applications.

4 . 2 .  S p a t i a l  a n a l o g i e s  t o  t h e  c e n t r a l  l i m i t  t h e o r e m

Although the concept of random multiplicative growth provides an intui-
tively appealing explanation for the size differentiation of many complex sys-
tems, it seems to be less comprehensible when the spatial context is explicitly 
taken into account. In particular, it doesn’t consider spatial interactions and 
different geographical extent (spatial levels) at which the distributions can be 
observed (Andersson et al. 2006).

Both of these issues have been recently addressed in an interesting expla-
nation of a strongly right-skewed species abundance distributions proposed 
by Šizling et al. (2009). The authors show that the distribution arises “from 
below” by a repetitive additive splicing of the abundances in many non-overlap-
ping neighboring subplots (i.e. small regions) into the abundances pertaining 
to regions of progressively larger sizes (regions at higher spatial scales). Up to 
this point the process is analogous to the summation of random variables in-
dicating the applicability of the additive CLT. However, it is shaped by specific 
spatial arrangements described by two parameters: the structure of spatial 
autocorrelation among the abundances, and spatial turnover of species, which 
determine a convergence towards strongly right-skewed distribution (Šizling 
et al. 2009, p. 6691). Despite this bottom-up model having been proposed and 
validated in the context of community ecology, it may suggest a very general 

3 In fact, only a small change in the specification of the underlying generative model can 
change the result from a power law to a lognormal distribution and conversely (Levy, 
Solomon 1996; Gabaix 1999; Mitzenmacher 2003).

4 For example Davis and Weinstein (2002) propose an interesting hybrid explanation for 
the historical development of the distribution of regional population in Japan combining 
a random growth process with the concepts of locational fundamentals and increasing 
returns. They showed that rather than city growth itself being purely random, it is the 
locational fundamentals (geographical attractiveness in terms of close distance to rivers, 
ports etc.) that are random. The locational fundamentals established the spatial pattern 
of relative regional densities and increasing returns help to determine the degree of spa-
tial differentiation.
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(statistical rather than biological) principle of the summation (splicing) of spa-
tially unevenly distributed variables which may be applicable in other fields 
dealing with spatial phenomena.

Nevertheless, even this model provides an explanation for the shape of the 
“parent distribution” of some “individual objects” (whether they are species, 
cities, or firms etc.) and doesn’t tell us much about the distribution of regions 
(regional characteristics). We can thus propose another simple spatial analogy 
to the CLT based on its slightly different interpretation that justifies conver-
gence of the sampling distribution of the mean towards a normal distribution. 
More concretely, the CLT suggests that, given a parent population with a mean 
μ and variance σ2, the distribution of the means pertaining to random inde-
pendent samples drawn from this parent population (that can be of arbitrary 
distribution if some basic conditions hold) converges with increasing sample 
size (N) to a normal distribution with the same mean and variance σ2/N. 
Now imagine that regions (subpopulations delimited by regional boundaries) 
could be considered as these independent samples drawn from some parent 
population (e.g. country). Then the convergence of the distribution of regional 
means to a normal distribution would be expected with increasing the levels 
of aggregation (i.e. increasing N) or geographical scale of considered regions 
irrespective of the parent distribution shape. Although this may be considered 
a simple null proposition, the process is again mostly shaped by various spa-
tial interactions which lead to spatially autocorrelated data.5 Because of the 
prevailing positive spatial autocorrelation the sampling variance predicted on 
the basis of CLT (i.e. σ2/N) tends to be underestimated. At the same time, 
the stronger the spatial autocorrelation the larger the underestimation and, 
consequently, a larger deviation of the actual distribution from the normal 
distribution symmetry can be expected6. This simple argument lies beyond the 
empirically documented regularity that relative spatial unevenness (relative 
spatial concentration) of natural and social phenomena generally increases 
with increasing geographical scale of observation (see figure 12 in Hampl 1998, 
p. 86). While the aforementioned proposition seeks to indicate links between 
the spatial autocorrelation and the shape of respective distribution (and thus 
also between the measures of spatial autocorrelation and inequality – see Ne-
trdová, Nosek 2009), the exact nature of this relationship still requires further 
investigation.

5. Sensitivity of inequality measures to data
from skewed distributions

While the graphical displays used above provide complete information about 
the entire course of a statistical distribution, often these tools are impractical 
because they do not allow for more exact quantitative comparisons. Therefore, 
measures of inequality which quantify the character of dispersion of obser-
vations over the whole distribution are employed. While a number of such 
measures have been developed for various applications, among other prop-
5 The pervasiveness of spatial autocorrelation determined by the spatial dependency of a 

majority of real-world processes and events leaded Tobler (1970, p. 236) to invoke “the 
first law of geography” arguing that “everything is related to everything else, but near 
things are more related than distant things.”

6 In fact, the gap between the actually observed between-region variance (σ2/N) refers to 
the relative significance of the spatial dimension of inequality (see Novotný 2007).
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erties, they may perform differently with regard to the presence of extreme 
values (Cowell, Flachaire 2007). Given the considerations of different forms 
of distributions that can be expected for geographical phenomena, here we 
will examine the behavior of selected widely used inequality indices in the 
relation to the distribution skewness. For these purposes, the following six 
measures were selected, of which each has certain appeal either because of its 
mathematical properties or intuitive transparency7:

1. Coefficient of variation (CV):

2. Theil coefficient (T):

3. Mean logarithmic deviation (MLD):

4. Gini coefficient (G):

5. Rate of heterogeneity (H) which quantifies value at the 50th percentile of the 
Lorenz curve

6. Robin Hood (or Hoover) index (RHI8):

The design of the testing procedure is as follows: Firstly, a large number 
of random numbers drawn from lognormal distributions with the same (geo-
metric) mean (corresponding to one) but different standard deviations (σ) is 
generated. The selection of the lognormal family is important not only because 
of its real-world significance (e.g. Limpert et. al 2001). The parameter σ deter-
mines the extent of the right-tail skewness of particular lognormal distribu-
tions which thus represent a continuum of distributions going from those with 
almost symmetric shapes very close to the normal one (for small σ) to consider-
ably right-skewed shapes similar to some power law functions for large σ (the 
results were calculated for 13 values of σ ranging from 0.001 to 10). Moreover, 
it is suggested that, dissimilarly to some other functional distributions, the 
Lorenz curves for lognormal distributions specified by different σ are nonin-
tersecting and the parameter σ therefore allows for unambiguous ordering of 
these distributions according to their inequality (Aitchinson, Brown 1957).

Secondly, the six measures of inequality listed above are calculated for each 
lognormally distributed dataset defined by different σ. As the results for the 
considered inequality measures mostly fall into different ranges, their stand-
ardized values I(y) are calculated by dividing each of the results by the respec-
tive value of the same measure calculated for the normal distribution with 

7 Note that we consider only the relative measures of inequality that focus on differences in 
relative proportions instead of absolute differentials and, at the same time, do not depend 
on the units of measurement.

8 Note that RHI corresponds to the amount that would have to be redistributed (from the 
upper half of a distribution to the lower half) in order to get uniform (equal) distribu-
tion.
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a mean of 10 and standard deviation 
of 2. This should make the behavior 
of particular indicators more easily 
mutually comparable. 

Thirdly, using the Monte Carlo 
simulation technique the same pro-
cedure as described above is repeated 
1,000 times and each result recorded. 
In this way, the 1,000 × 13 × 6 results 
(the set of 1,000 results for each of 13 
values of σ and each of the six inequal-
ity measures) are gathered. The aver-
age values of the inequality measures 
are then computed from these 13 × 6 
sets of results (the repetitions should 
obviously restrict impacts of random 
fluctuations)9. These average values 
are shown in Figure 4 and indicate the 
behavior of the considered inequality 
measures in relation to σ.

The figure suggests that the Theil 
coefficient, MLD and, to a certain 
extent, also the coefficient of vari-
ation are considerably sensitive to 
data from skewed distributions. It 
may limit the applications of these 
indices when there are large outlying 
observations. On the other hand, the 
rate of heterogeneity H is quite insen-
sitive to changes in the distribution 
shape, at least as far as the skewness 
is considered. While in some cases 
this may be regarded as an advantage 
(e.g. when we can expect some meas-
urement errors or existence of some 
influential large outliers that are not 
the object of interest), in many other 
cases, the lack of sensitivity to dif-
ferent levels of σ disqualifies H as a 
transparent measure of inequality. 
The Gini coefficient and RHI are then 
in an intermediate position as they 
are reasonably sensitive to changes in 
σ until it reaches some “critical” level 
(approximately σ = 2) from which their 
marginal increases are minimal.

In addition, Figure 5 depicts another interesting property of the considered 
inequality measures in terms of their stability with regard to random fluctua-

Fig. 4 – Sensitivity of inequality measures 
to data from differently skewed distribu-
tions; σ stands for the standard deviation of 
considered lognormal distribution and I(y) 
denotes standardized values of particular 
measures of inequality for this distribu-
tion.

Fig. 5 – Stability of inequality measures 
with respect to random fluctuation in data 
from differently skewed distributions; σ 
stands for the standard deviation of consid-
ered lognormal distribution and VI(y) denotes 
relative variability of particular indicators 
of inequality (measured by the coefficient of 
variation) calculated 1,000 times for 13 dif-
ferent levels of σ.

9 The authors are aware that similar results can probably also be obtained numerically. 
However, mainly because of a lack of appropriate mathematical skills, the simple “experi-
mental” way was employed here.
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tions in repetitively generated data. While the x-axis has remained the same 
as in the previous figure, the value of VI(y) in the y-axis shows variability of 
results obtained by particular inequality indicators within the sets of 1,000 
repetitions for each of 13 levels of σ. Although the stability of particular in-
equality measures is evidently related to their sensitivity to different σ ex-
amined previously in Figure 4, here additionally the poor performance of the 
coefficient of variation has been uncovered.

6. Conclusion

The reviewed literature from different disciplines (of which only a frac-
tion is referred to in this paper) has indicated that existing research on the 
regularities in statistical distributions of various social and environmental 
phenomena involves two interrelated steps. The first step usually comprises 
the identification and empirical documentation of the regularities as well 
as their classification (e.g. the approximation of observed data by functional 
forms). In the second step, possible explanations in terms of underlying mod-
els are searched, proposed, and possibly validated. Obviously, the identifica-
tion and description of a distribution is as consequential as the knowledge of 
processes and circumstances from which such a distribution can emerge. Now 
we argue that most of this research in quantitative geography (including the 
Czech case) has focused on identifying, documenting, and categorizing but less 
on the latter step. In this regard, it lags behind some other disciplines deal-
ing with complex systems where the current emphasis is much more on the 
propositions of underlying models (both statistical and context-specific) and on 
their validation on real or simulated data. To a certain extent this gap may be 
justified by the specific character of geographical inquiry. However, a general 
remark which goes beyond the topics discussed here is that findings obtained 
elsewhere still have to be acknowledged and critically examined with regard 
to their applicability in the specific geographical context.

In this paper we have sought to provide some basic illustrations pertaining 
to both of the aforementioned steps in the research on regularities in statistical 
distributions. Departing from the elemental difference between the distribu-
tions according to structural and size variables, the regularity of considerably 
right-skewed size distributions was discussed as pertaining to almost any 
set of (certainly defined) complex systems including those investigated in geo-
graphy. Subsequently, some examples of basic underlying principles that may 
provide very general (statistical rather than context-specific) explanations for 
the considered distributions have briefly been mentioned. More concretely, we 
have touched on the well-known random multiplicative process and more inno-
vative spatial analogies of the central limit theorem. With respect to the latter, 
a challenge for future research has been indicated in terms of the investigation 
of the relationship between the structure and extent of spatial autocorrelation 
and the convergence of the distribution of regions (spatially contiguous groups 
of individual observations) to a skewed (more unequal) figures with increasing 
the levels of aggregation (spatial scale).

A more practically-minded person might regard the above discussion as 
worthless. However, it is suggested that the regularities such as those in sta-
tistical distributions are important because they provide some general global 
constraints for locally specific processes and patterns. At the same time, they 
cannot be understood as some absolute laws but rather in a softer sense as a 
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stochastic framework that may often be anticipated beyond empirical facts and 
that is open to incorporation of context-specific details and factors (Andersson 
et al. 2006).

Bearing these general remarks in mind, in this paper we nevertheless in-
tended to appease more practically-oriented readers too. Therefore, in section 4 
we tested the performance of six common measures of inequality with regard 
to data coming from distributions of different skewness10. Using a simple 
Monte Carlo simulation method a considerably different sensitivity and sta-
bility of the analyzed inequality measures was detected. The Theil coefficient, 
the mean logarithmic deviation, and to certain extent also the coefficient of 
variation are quite sensitive to data from skewed distributions. By contrast, 
the rate of heterogeneity H has been found to be impractically insensitive. 
In addition, the Theil index and especially the coefficient of variation were 
uncovered to be prone to instabilities in data. For researchers or policy-makers 
who may wish to select an appropriate measure of inequality we thus advise 
application of the Gini coefficient or the Robin Hood index if skewed data are 
expected. A simple comparison of the distance between the mean and median 
may reveal a lot in this respect. Obviously, although the focus here was on the 
measures of inequality, similar arguments may apply regarding the usage of 
many other statistical techniques that require normally distributed data.
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S h r n u t í

K VYBRANÝM OTÁZKÁM NOMOTETICKÉ GEOGRAFIE: STATISTICKÁ 
ROZLOŽENÍ, JEJICH VÝCHOZÍ PRINCIPY A MÍRY NEROVNOMĚRNOSTÍ

Nejběžnějším jednorozměrným vyjádřením dvourozměrné prostorové diferenciace určité-
ho jevu je jeho statistické rozdělení (frekvenční, resp. pravděpodobnostní rozdělení). Důle-
žitost tohoto vyjádření, které zachycuje některé obecné pravidelnosti v uspořádání vnějšího 
světa, zdůraznil v kontextu geografického zkoumání již Korčák (1938, 1941), jehož myšlenky 
pak dále rozvedl Hampl (1971, 1998, 2000 atd.). Vybranými otázkami, které se týkají pravi-
delností ve statistických rozloženích různých sociálních a environmentálních jevů se zabývá 
i předkládaný článek, který je strukturovaný do tří souvisejících částí. První část je založena 
na rešerši literatury a několika empirických příkladech. Východiskem je dříve zdůrazněné 
rozlišení mezi rozloženími podle strukturálních/„kvalitativních“ a velikostních znaků kom-
plexních systémů. Cílem je zde mimo jiné poukázat na dlouhodobý (a mnohdy paralelní) 
zájem řady různých vědních disciplín studujících komplexní systémy o obdobné typy jejich 
statistického rozdělení na základě velikostních znaků s významnou pravostrannou šikmostí 
(pozitivní asymetrií).

Uvedený zájem byl také reflektován v geografii, byť v tomto ohledu nelze naši disciplínu 
považovat za výlučnou. Zatímco velký důraz byl položen na empirickou dokumentaci a pří-
padně pak i klasifikaci pravidelností v uvedených rozloženích, relativně méně pozornosti bylo 
(oproti některým jiným disciplínám) věnováno jejich potenciálním vysvětlením. Ve druhé 
části článku proto diskutujeme dva příklady jednoduchých obecných (statistických spíše než 
kontextuálních) principů, které mohou zmíněná rozdělení podmiňovat. Jde jednak o známý 
mechanismus multiplikativního náhodného procesu (a jeho varianty) a dále pak tzv. pro-
storové analogie k principu centrální limitní věty. V rámci zmíněných prostorových analogií 
k centrální limitní větě je naznačena obecná souvislost mezi prostorovou autokorelací a for-
mou statistického rozdělení řady komplexních jevů včetně regionálních systémů. Podrobnější 
prozkoumání charakteru tohoto vztahu představuje potenciální téma dalšího výzkumu.

V návaznosti na diskuse různě zešikmených rozdělení v prvých dvou částech článku je 
jeho třetí část zaměřena aplikačně. Zabývá se testováním vybraných parametrických měr 
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nerovnoměrností, jakožto v praxi patrně nejčastěji kvantifikovaného aspektu statistického 
rozdělení. Sledována je citlivost a stabilita šesti hojně používaných indikátorů vůči datům 
pocházejícím z různě zešikmených rozdělení a vůči náhodným fluktuacím v těchto datech. 
Výsledky v tomto ohledu poukazují na značnou citlivost a nestabilitu Theilova koeficientu, 
průměrné logaritmované odchylky a variačního koeficientu a na druhé straně neprakticky 
nízkou citlivost míry heterogenity H. Z hlediska testovaných vlastností lze při předpokladu 
existence asymetrického rozdělení analyzovaných dat pro sledování nerovnoměrnosti (vari-
ability) doporučit použití Giniho koeficientu či Robin Hood (Hooverova) indexu.

Obr. 1 – Rozdělení 3  141 amerických okresů (counties) podle vybraných charakteristik 
struktury/kvality a odpovídajících velikostních charakteristik. Vlevo nahoře – míra 
rozvodovosti, vpravo nahoře – počet rozvodů, vlevo dole – příjem na osobu, vpravo 
dole – příjem na km2.

Obr. 2 – Vývoj rozdělení zemí světa podle odhadované naděje dožití mezi lety 1800 a 2007.
Obr. 3 – Různé způsoby znázornění rozdělení 6  258 českých obcí (grafy vlevo) a 3  141 ame-

rických okresů (grafy vpravo) podle jejich populační velikosti. Přímky ve spodních 
grafech („log-log rank-size grafy“) odpovídají teoretickým rozdělením podle Zipfova 
modelu.

Obr. 4 – Citlivost měr nerovnoměrností v ohledu k datům z různě zešikmených rozdělení; σ 
na ose x označuje standardní odchylku uvažovaného lognormálního rozdělení a I(y) 
na ose y zachycuje standardizované hodnoty uvažovaných měr nerovnoměrností.

Obr. 5 – Stabilita měr nerovnoměrností v ohledu k náhodným fluktuacím v datech genero-
vaných z různě zešikmených distribucí; σ na ose x označuje standardní odchylku 
uvažovaného lognormálního rozdělení a VI(y) na ose y zachycuje relativní variabilitu 
jednotlivých měr nerovnoměrností (měřenou variačním koeficientem) opakovaně 
1  000krát vypočítaných pro jednotlivé hodnoty σ.
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